我研究生期间主要是做高光谱遥感影像分类的,毕业论文也是基于深度学习的高光谱遥感影像分类课题,转眼间已经毕业四年了,如今把这块材料稍作了整理,也许对后来人有用!
我的论文在我的谷歌学术上都可以看见:https://scholar.google.com/citations?user=on_b6MMAAAAJ&hl=zh-CN&oi=ao
GitHub – leeguandong/How-to-make–high–resolution–remote–sensing-image–dataset: 高分遥感影像数据集的制作高分遥感影像数据集的制作. Contribute to leeguandong/How-to-make–high-resolution–remote-sensing-image–dataset development by creating an account on GitHub.https://github.com/leeguandong/How-to-make–high-resolution-remote-sensing-image–dataset2.Three–dimensional densely connected convolutional network for hyperspectral remote sensing image classification
https://github.com/leeguandong/3D-DenseNet-for-HSIhttps://github.com/leeguandong/3D-DenseNet-for-HSI3.Multi-Scale-Dense-Networks-for-Hyperspectral-Remote-Sensing-Image-Classification,这篇发了TGRS。
GitHub – leeguandong/Multi-Scale-Dense-Networks-for-Hyperspectral-Remote-Sensing-Image-Classification: paper:Multi-Scale Dense Networks for Hyperspectral Remote Sensing Image Classificationpaper:Multi-Scale Dense Networks for Hyperspectral Remote Sensing Image Classification – GitHub – leeguandong/Multi-Scale-Dense-Networks-for-Hyperspectral-Remote-Sensing-Image-Classification: paper:Multi-Scale Dense Networks for Hyperspectral Remote Sensing Image Classificationhttps://github.com/leeguandong/Multi-Scale-Dense-Networks-for-Hyperspectral-Remote-Sensing-Image-Classification4.mmhyperspectral,高光谱的分类方法和深度学习领域的很多分类方法也是类似的,因此尝试了用mm系列的配置写了一个高光谱分类方法的框架。
https://github.com/leeguandong/mmhyperspectralhttps://github.com/leeguandong/mmhyperspectral5.Faster hyperspectral image classification based on selective kernel mechanism using deep convolutional networks,挂在arixv,主打轻量化和高速处理。
https://github.com/leeguandong/FSKNet-for-HSIhttps://github.com/leeguandong/FSKNet-for-HSI6.DGCNet、LGCNet
Spatial-Spectral Hyperspectral Classification based on Learnable 3D Group Convolutionhttps://github.com/leeguandong/DGCNet-for-HSIhttps://github.com/leeguandong/DGCNet-for-HSI
原文地址:https://blog.csdn.net/u012193416/article/details/134765268
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_36964.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!