本文介绍: 本文介绍了树和森林后根遍历,包括递归算法PostOrder、非递归算法NPO

5.1 树的基本概念

5.1.1 树的定义

  • 一棵树是结点的有限集合T:
    • 若T非空,则:
      • 有一个特别标出的结点,称作该树的,记为root(T);
      • 其余结点分成若干个不相交的非空集合T1, T2, …, Tm (m>0),其中T1, T2, …, Tm又都是树,称作root(T)的子树
    • T 空时为空树,记作root(T)=NULL。

5.1.2 森林的定义

  一个森林是0棵或多棵不相交(非空)树的集合,通常是一个有序的集合。换句话说,森林由多个树组成,这些树之间没有交集,且可以按照一定的次序排列。在森林中,每棵树都是独立的,具有根节点和子树,树与树之间没有直接的连接关系。
  森林是树的扩展概念,它是由多个树组成的集合。在计算机科学中,森林也被广泛应用数据结构算法设计中,特别是在图论和网络分析等领域。
在这里插入图片描述

5.1.3 树的术语

参照前文:【数据结构】树与二叉树(一):树(森林)的基本概念:父亲、儿子、兄弟、后裔、祖先、度、叶子结点、分支结点、结点的层数、路径、路径长度、结点的深度、树的深度

5.2 二叉树

5.3 树

5.3.1 树的存储结构

1. 理论基础

2. 典型实例

3. Father链接结构

4. 儿子链表链接结构

【数据结构】树与二叉树(十八):树的存储结构——Father链接结构、儿子链表链接结构

5. 左儿子右兄弟链接结构

【数据结构】树与二叉树(十九):树的存储结构——左儿子右兄弟链接结构(树、森林与二叉树的转化)
  左儿子右兄弟链接结构通过使用每个节点的三个域(FirstChild、Data、NextBrother)来构建一棵树,同时使得树具有二叉树的性质。具体来说,每个节点包含以下信息

  1. FirstChild 存放指向该节点的大儿子(最左边的子节点)的指针。这个指针使得我们可以迅速找到一个节点的第一个子节点。
  2. Data: 存放节点的数据
  3. NextBrother: 存放指向该节点的大兄弟(同一层中右边的兄弟节点)的指针。这个指针使得我们可以在同一层中迅速找到节点的下一个兄弟节点。

  通过这样的结构,整棵树可以用左儿子右兄弟链接结构表示成一棵二叉树。这种表示方式有时候被用于一些特殊的树结构,例如二叉树二叉树的森林等。这种结构的优点之一是它更紧凑地表示树,而不需要额外的指针来表示兄弟关系。
在这里插入图片描述

   A
  /|
 B C D
  / 
 E   F
A
|
B -- C -- D
     |
     E -- F

即:

      A
     / 
    B   
    
	  C
  	 /  
  	E   D
  	 
  	  F

在这里插入图片描述

5.3.2 获取结点的算法

【数据结构】树与二叉树(二十):树获取大儿子、大兄弟结点的算法(GFC、GNB)

5.3.3 树和森林的遍历

【数据结构】树与二叉树(七):二叉树的遍历(先序、中序、后序及其C语言实现)

1. 先根遍历(递归、非递归)

在这里插入图片描述

【数据结构】树与二叉树(廿一):树和森林的遍历——先根遍历(递归算法PreOrder、非递归算法NPO)

2. 后根遍历(递归)

a.理论

在这里插入图片描述

b. ADL算法PostOrder

在这里插入图片描述

  1. 基本条件检查

    • IF t=NULL THEN RETURN.:如果树的根节点 t 为空,直接返回,递归的出口条件
  2. 递归调用子树的后根遍历

  3. 迭代调用右兄弟节点的后根遍历

  4. 打印根节点数据

    • PRINT(Data(t)).:打印当前树节点 t数据
        通过递归地调用后根遍历算法,依次访问树的根节点、根节点的孩子节点、孩子节点的兄弟节点……以此类推,完成对整个树的后根遍历。
c. 代码实现
void PostOrder(TreeNode* t) {
    if (t == NULL) {
        return;
    }

    // 递归调用子树的后根遍历
    TreeNode* child = getFirstChild(t);
    while (child != NULL) {
        PostOrder(child);
        // 迭代调用右兄弟节点的后根遍历
        child = getNextBrother(child);
    }

    // 打印当前树节点的数据
    printf("%c ", t->data);
}

3. 后根遍历(非递归)

a. ADL算法NPO
b. NPO算法解析

暂时仅提供c语言代码,ADL语言代码解析,有缘再见……

c. 代码实现
// 后根遍历的非递归算法
void NorecPostOrder(TreeNode* root) {
    if (root == NULL) {
        return;
    }

    TreeNode* stack1[100];
    TreeNode* stack2[100];
    int top1 = -1;
    int top2 = -1;

    TreeNode* p = root;
    stack1[++top1] = p;

    while (top1 != -1) {
        p = stack1[top1--];
        stack2[++top2] = p;

        TreeNode* child = getFirstChild(p);
        while (child != NULL) {
            stack1[++top1] = child;
            child = getNextBrother(child);
        }
    }

    while (top2 != -1) {
        printf("%c ", stack2[top2--]->data);
    }
}

3. 森林的遍历

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4. 代码整合

#include <stdio.h>
#include <stdlib.h>

// 定义树节点
typedef struct TreeNode {
    char data;
    struct TreeNode* firstChild;
    struct TreeNode* nextBrother;
} TreeNode;

// 创建树节点
TreeNode* createNode(char data) {
    TreeNode* newNode = (TreeNode*)malloc(sizeof(TreeNode));
    if (newNode != NULL) {
        newNode->data = data;
        newNode->firstChild = NULL;
        newNode->nextBrother = NULL;
    }
    return newNode;
}

// 释放树节点及其子树
void freeTree(TreeNode* root) {
    if (root != NULL) {
        freeTree(root->firstChild);
        freeTree(root->nextBrother);
        free(root);
    }
}

// 算法GFC:获取大儿子结点
TreeNode* getFirstChild(TreeNode* p) {
    if (p != NULL &amp;&amp; p->firstChild != NULL) {
        return p->firstChild;
    }
    return NULL;
}

// 算法GNB:获取下一个兄弟结点
TreeNode* getNextBrother(TreeNode* p) {
    if (p != NULL &amp;&amp; p->nextBrother != NULL) {
        return p->nextBrother;
    }
    return NULL;
}

/* 使用已知的getFirstChild和getNextBrother函数实现后根遍历以t为根指针的树。*/
void PostOrder(TreeNode* t) {
    if (t == NULL) {
        return;
    }

    // 递归调用子树的后根遍历
    TreeNode* child = getFirstChild(t);
    while (child != NULL) {
        PostOrder(child);
        // 迭代调用右兄弟节点的后根遍历
        child = getNextBrother(child);
    }

    // 打印当前树节点的数据
    printf("%c ", t->data);
}

// 后根遍历的非递归算法
void NorecPostOrder(TreeNode* root) {
    if (root == NULL) {
        return;
    }

    TreeNode* stack1[100];
    TreeNode* stack2[100];
    int top1 = -1;
    int top2 = -1;

    TreeNode* p = root;
    stack1[++top1] = p;

    while (top1 != -1) {
        p = stack1[top1--];
        stack2[++top2] = p;

        TreeNode* child = getFirstChild(p);
        while (child != NULL) {
            stack1[++top1] = child;
            child = getNextBrother(child);
        }
    }

    while (top2 != -1) {
        printf("%c ", stack2[top2--]->data);
    }
}

int main() {
    // 构建左儿子右兄弟链接结构的树
    TreeNode* A = createNode('A');
    TreeNode* B = createNode('B');
    TreeNode* C = createNode('C');
    TreeNode* D = createNode('D');
    TreeNode* E = createNode('E');
    TreeNode* F = createNode('F');

    A->firstChild = B;
    B->nextBrother = C;
    C->nextBrother = D;
    C->firstChild = E;
    E->nextBrother = F;

    // 使用递归后根遍历算法
    printf("Recursive Postorder: n");
    PostOrder(A);
    printf("n");

    // 使用非递归后根遍历算法
    printf("Non-recursive PostOrder: n");
    NorecPostOrder(A);
    printf("n");

    // 释放树节点
    freeTree(A);

    return 0;
}

在这里插入图片描述

原文地址:https://blog.csdn.net/m0_63834988/article/details/134607240

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_3782.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注