本文介绍: 贪心算法是一种在每一步选择中都采取当前状态最优决策的算法,以期望能够通过系列局部最优选择达到全局最优贪心算法的关键是定义局部最优选择,并且不回退,即一旦做出了选择,就不能撤销。关键的两步提出贪心策略:观察问题特征构造贪心选择证明贪心正确假设最优方案通过替换证明。

贪心算法

贪心算法是一种在每一步选择中都采取当前状态最优决策的算法,以期望能够通过系列局部最优的选择达到全局最优。贪心算法的关键是定义局部最优的选择,并且不回退,即一旦做出了选择,就不能撤销。

一般来说,贪心算法适用于满足以下两个条件问题

  1. 最优子结构性质(Optimal Substructure): 问题的最优解包含了其子问题的最优解。这意味着可以通过子问题的最优解来构造原问题的最优解。
  2. 贪心选择性质(Greedy Choice Property):考虑做某个选择时,贪心算法总是选择当前看起来最优的解,而不考虑其他可能性。这个选择是局部最优的,希望通过这种选择能够达到全局最优。

关键的两步
提出贪心策略:观察问题特征构造贪心选择
证明贪心正确假设最优方案通过替换证明

相关问题

1、部分背包问题

问题描述

部分背包问题是背包问题的一个变体,与 0-1 背包问题和完全背包问题不同。在部分背包问题中,每个物品可以选择一部分放入背包,而不是必须选择放入或不放入

以下是部分背包问题的算法思想:

  1. 计算单位价值:每个物品计算单位价值,单位价值等于物品的价值/物品的重量

    单位价值=物品的价值/物品的重量

  2. 按单位价值降序排序 将所有物品按照单位价值降序排列,这样就可以优先选择单位价值较高的物品。

  3. 贪心选择: 从排好序的物品列表中顺序选择物品放入背包。对于每个物品,可以选择一部分(即部分背包),而不必全部选择。

  4. 计算总价值: 根据所选物品计算放入背包的总价值

算法实现

#include <stdio.h>
#include <stdlib.h>

// 物品的结构
struct Item{
	int weight;  // 物品重量 
	int value;   // 物品价值 
}; 

// 1计算单位价值
double computeUnitValue(struct Item item){
	double result = item.value/item.weight;
	return result;
} 

// 2 按单位价值进行降序排序
// 在这个比较函数中,参数类型const void*,
//这是因为这个函数用于通用排序算法(例如 qsort)的,
//而通用排序算法不关心待排序元素的具体类型
int compare(const void* a,const void* b) {
	// *(struct Item*) 
	// 这是一种类型转换,将通用指针 const void* 转换为具体类型 struct Item*
	 double unitValueA = computeUnitValue(*(struct Item*)a);
	 double unitValueB = computeUnitValue(*(struct Item*)b);
	 
	 if(unitValueA < unitValueB){
	 	return 1;
	 }else if(unitValueA > unitValueB){
	 	return -1;
	 }else{
	 	return 0;
	 }
}

// 3 贪心算法
double fractionalKnapsack(struct Item items[],int n,int vtl) {
	// 跟据单位价值降序排列 
	qsort(items,n,sizeof(struct Item),compare);
	
	// 最大总价值 
	double maxValue = 0.0;  
	
	// 从排好序的物品列表中贪心选择,选择单位价值大的物品
	// 此时的items 是已经是跟据单位价值降序排序的,所以items[0] 是单位价值最大的物品 
	for(int i=0;i<n;i++){
		//  如果背包的容量>=物品的容量,则贪心策略,将整个物品放入背包 
		if(vtl>=items[i].weight){
			maxValue += items[i].value;  //  最大的价值更新 
			vtl -= items[i].weight;		// 背包容量更新 
		}else{ // 如果背包容量没法将整个物品放入,则计算他的单位价值,然后单位价值*剩余背包容量 
			maxValue += computeUnitValue(items[i])*vtl;
			break;
		}
	} 
	
	return maxValue;
}


// 主函数
int main() {
    struct Item items[] = {{10, 60}, {20, 100}, {30, 120}};
    int n = sizeof(items) / sizeof(items[0]);
    int vtl = 50; // 背包容量 

    double maxValue = fractionalKnapsack(items, n, capacity);

    printf("Maximum value that can be obtained = %.2fn", maxValue);

    return 0;
}

2、哈夫曼编码

哈夫曼编码(Huffman Coding)是一种基于字符出现频率编码方式,它通过使用较短的比特序列表示出现频率较高的字符,从而实现数据的高效压缩。这种编码方式是由大卫·哈夫曼(David A. Huffman)于1952年提出的。

哈夫曼编码基本思想:

  1. 构建哈夫曼树(Huffman Tree
  2. 分配编码
  3. 生成哈夫曼编码表

算法实现

#include <stdio.h>
#include <stdlib.h>

// 哈夫曼树节点结构
struct HuffmanNode {
    char data;
    int frequency;
    struct HuffmanNode* left;
    struct HuffmanNode* right;
};

// 字符频率表结构
struct FrequencyTable {
    char data;
    int frequency;
};

// 优先队列中的元素
struct PriorityQueueElement {
    struct HuffmanNode* node;
    struct PriorityQueueElement* next;
};

// 优先队列结构
struct PriorityQueue {
    struct PriorityQueueElement* front;
};

// 初始化优先队列
void initPriorityQueue(struct PriorityQueue* pq) {
    pq->front = NULL;
}

// 插入元素到优先队列
void insertPriorityQueue(struct PriorityQueue* pq, struct HuffmanNode* node) {
    struct PriorityQueueElement* newElement = (struct PriorityQueueElement*)malloc(sizeof(struct PriorityQueueElement));
    newElement->node = node;
    newElement->next = NULL;

    if (pq->front == NULL || node->frequency < pq->front->node->frequency) {
        newElement->next = pq->front;
        pq->front = newElement;
    } else {
        struct PriorityQueueElement* current = pq->front;
        while (current->next != NULL &amp;&amp; current->next->node->frequency <= node->frequency) {
            current = current->next;
        }
        newElement->next = current->next;
        current->next = newElement;
    }
}

// 从优先队列中取最小元素
struct HuffmanNode* extractMinPriorityQueue(struct PriorityQueue* pq) {
    if (pq->front == NULL) {
        return NULL;
    }

    struct HuffmanNode* minNode = pq->front->node;
    struct PriorityQueueElement* temp = pq->front;
    pq->front = pq->front->next;
    free(temp);

    return minNode;
}

// 构建哈夫曼树
struct HuffmanNode* buildHuffmanTree(struct FrequencyTable frequencies[], int n) {
    struct PriorityQueue pq;
    initPriorityQueue(&amp;pq);

    // 初始化优先队列,每个节点作为一个单独的树
    for (int i = 0; i < n; ++i) {
        struct HuffmanNode* newNode = (struct HuffmanNode*)malloc(sizeof(struct HuffmanNode));
        newNode->data = frequencies[i].data;
        newNode->frequency = frequencies[i].frequency;
        newNode->left = newNode->right = NULL;
        insertPriorityQueue(&amp;pq, newNode);
    }

    // 重复合并节点,直到队列中只剩下一个节点,即哈夫曼树的根
    while (pq.front->next != NULL) {
        struct HuffmanNode* leftChild = extractMinPriorityQueue(&pq);
        struct HuffmanNode* rightChild = extractMinPriorityQueue(&pq);

        struct HuffmanNode* newNode = (struct HuffmanNode*)malloc(sizeof(struct HuffmanNode));
        newNode->data = ''; // 内部节点没有字符数据
        newNode->frequency = leftChild->frequency + rightChild->frequency;
        newNode->left = leftChild;
        newNode->right = rightChild;

        insertPriorityQueue(&pq, newNode);
    }

    // 返回哈夫曼树的根节点
    return extractMinPriorityQueue(&pq);
}

// 生成哈夫曼编码
void generateHuffmanCodes(struct HuffmanNode* root, int code[], int top) {
    if (root->left != NULL) {
        code[top] = 0;
        generateHuffmanCodes(root->left, code, top + 1);
    }

    if (root->right != NULL) {
        code[top] = 1;
        generateHuffmanCodes(root->right, code, top + 1);
    }

    if (root->left == NULL && root->right == NULL) {
        printf("Character: %c, Code: ", root->data);
        for (int i = 0; i < top; ++i) {
            printf("%d", code[i]);
        }
        printf("n");
    }
}

// 主函数
int main() {
    struct FrequencyTable frequencies[] = {{'A', 2}, {'B', 1}, {'C', 1}, {'D', 1},{'E',4}
	};
    int n = sizeof(frequencies) / sizeof(frequencies[0]);

    struct HuffmanNode* root = buildHuffmanTree(frequencies, n);

    int code[100];
    int top = 0;

    printf("Huffman Codes:n");
    generateHuffmanCodes(root, code, top);

    return 0;
}

3、活动选择问题

活动选择问题(Activity Selection Problem)是一个经典的贪心算法问题,称为区间调度问题给定一组活动,每个活动都有一个开始时间结束时间目标是选择出最大可能互不相交的活动子集

以下是活动选择问题的算法思想:

  1. 将活动按照结束时间的先后顺序进行排序。
  2. 选择第一个动作初始活动,并将其加入最终选择的活动子集
  3. 第二个活动开始,依次判断每个活动是否与已选择的活动相容(即结束时间是否早于下一个活动的开始时间),如果相容,则将该活动加入最终选择的活动子集
  4. 重复步骤3,直到遍历完所有活动。

通过贪心策略,每次选择结束时间最早的活动可以确保选择的活动子集最大化。因为如果一个活动与已选择的活动相容,那么它一定是结束时间最早的活动,选择它不会影响后续活动的选择。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

代码实现

该算法的核心就是 每次选择结束时间最早的活动

#include <stdio.h>
#include <stdlib.h>

// 活动结构
struct Activity {
    int start;
    int end;
};

// 比较函数用于结束时间升序排序
int compare(const void* a, const void* b) {
    return ((struct Activity*)a)->end - ((struct Activity*)b)->end;
}

// 活动选择算法
void activitySelection(struct Activity activities[], int n) {
    // 按结束时间升序排序
    qsort(activities, n, sizeof(struct Activity), compare);

    // 第一个活动总是被选择
    printf("Selected activity: (%d, %d)n", activities[0].start, activities[0].end);

    // 从第二个活动开始选择
    int lastActivity = 0;
    for (int i = 1; i < n; ++i) {
        // 如果活动的开始时间晚于或等于上一个已选择活动的结束时间,选择该活动
        if (activities[i].start >= activities[lastActivity].end) {
            printf("Selected activity: (%d, %d)n", activities[i].start, activities[i].end);
            lastActivity = i;
        }
    }
}

// 主函数
int main() {
    struct Activity activities[] = {{1, 4}, {3, 5}, {0, 6}, {5, 7}, {3, 9}, {5, 9}, {6, 10}, {8, 11}, {8, 12}, {2, 14}, {12, 16}};
    int n = sizeof(activities) / sizeof(activities[0]);

    printf("Activity schedule:n");
    activitySelection(activities, n);

    return 0;
}

原文地址:https://blog.csdn.net/XUN__MLF/article/details/134770457

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_37916.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注