本文介绍: 网络架构一个神经网络一般可以分为两块微调:使用之前已经训练好的特征抽取模块来直接使用到现有模型上,而对于线性分类器由于标号可能发生改变而不能直接使用训练是一个目标数据集上的正常训练任务,但使用更强的正则化重用分类器权重固定一些层神经网络通常学习有层次的特征表示微调通过使用在大数据上得到的预训练好的模型来初始化模型权重来完成提升精度预训练模型质量很重要微调通常速度更快,精度更好。
微调:使用之前已经训练好的特征抽取模块来直接使用到现有模型上,而对于线性分类器由于标号可能发生改变而不能直接使用
就是重用在大数据集上训练好的模型的特征提取模块,用来做自己模型的特征提取的初始化,用来使得相比于随机初始化有更好的效果
1. 实现
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。