本文介绍: 错误的曝光照片的校正已经被广泛使用深度卷积神经网络或Transformer进行广泛修正。尽管这些方法具有令人鼓舞的表现,但它们通常在高分辨率照片上具有大量的参数数量和沉重的计算浮点运算(FLOPs)。在本文中,作者提出了一个极轻量级(仅有约8K参数)的多尺度线性变换(MSLT)网络,该网络采用多层感知架构,可以在125帧每秒(FPS)的速度下,使用泰坦RTX GPU处理4K分辨率sRGB图像。
MSLTNet开源 | 4K分辨率+125FPS+8K的参数量,怎养才可以拒绝这样的模型呢?
错误的曝光照片的校正已经被广泛使用深度卷积神经网络或Transformer进行广泛修正。尽管这些方法具有令人鼓舞的表现,但它们通常在高分辨率照片上具有大量的参数数量和沉重的计算浮点运算(FLOPs)。
在本文中,作者提出了一个极轻量级(仅有约8K参数)的多尺度线性变换(MSLT)网络,该网络采用多层感知架构,可以在125帧每秒(FPS)的速度下,使用泰坦RTX GPU处理4K分辨率sRGB图像。
具体来说,提出的MSLT网络首先使用拉普拉斯金字塔技术将输入图像分解为高和低频层,然后依次通过像素自适应线性变换来纠正不同层,这种实现方式是通过高效的双边网格学习或1×1卷积来实现的。在两个基准数据集上的实验表明,作者的MSLT在照片曝光校正方面与最先进的水平相比具有高效性。大量的消融实验验证了作者的贡献的有效性。
代码:https://github.com/Zhou-Yijie/MSLTNet
1 Introduction
智能手机摄像头的普及使人们像摄影师一样捕捉日常生活场景。然而,快门速度、焦距光圈比和/或ISO值设置不准确可能导致捕捉到的照片曝光不正确,视觉质量下降。为了以视觉上可取的方式正确调整照片曝光,对于边缘设备开发高效的曝光校正方法至关重要。
2 Related Work
Image Exposure Correction Methods
Image Processing MLPs
Light–weight Image Enhancement Networks
3 Proposed Method
Network Overview
Low-Frequency Layer Correction
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。