本文介绍: 我修改下载文件名 https://… …/preprocessed_11k.tar.gz直接粘贴网址里面可以下载。检测是否能够训练(先下载数据get_laion_data.sh再运行代码kd_train_toy.sh批量大小为8 (=4×2),训练BK-SDM-Base 20次迭代大约需要5分钟和22GB的GPU内存。$FILe_PATH 就是下载路径./data/laion_aes/preprocessed_11k。单GPU训练BK-SDM{Base, Small, Tiny}-2。

Installation(下载代码-装环境)

conda create -n bk-sdm python=3.8
conda activate bk-sdm
git clone https://github.com/Nota-NetsPresso/BK-SDM.git
cd BK-SDM
pip install -r requirements.txt
Note on the torch versions weve used

小的例子

PNDM采样器 50步去噪声

等效代码(修改SD-v1.4的U-Net,同时保留其文本编码器图像解码器):

Distillation Pretraining

Our code was based on train_text_to_image.py of Diffusers 0.15.0.dev0. To access the latest version, use this link.
BK-SDM的diffusers版本0.15
我的diffusers版本比较高0.24.0

检测是否能够训练(先下载数据集get_laion_data.sh再运行代码kd_train_toy.sh

1 一个玩具数据集(11K的imgtxt对)下载到。

bash scripts/get_laion_data.sh preprocessed_11k

/data/laion_aes/preprocessed_11k (1.7GB in tar.gz;1.8GB数据文件夹)。
get_laion_data.sh

需要修改,实际就是下载这三个数据集,我自行下载

# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_11k.tar.gz
# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_212k.tar.gz
# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_2256k.tar.gz

修改后下载文件名 https://… …/preprocessed_11k.tar.gz直接粘贴网址里面也可以下载
wget $S3_URL -0 $FILe_PATH
$S3_URL 就是这个网址
$FILe_PATH 就是下载路径./data/laion_aes/preprocessed_11k

DATA_TYPE=$"preprocessed_11k"  # {preprocessed_11k, preprocessed_212k, preprocessed_2256k}
FILE_NAME="${DATA_TYPE}.tar.gz"
 

DATA_DIR="./data/laion_aes/"
FILE_UNZIP_DIR="${DATA_DIR}${DATA_TYPE}"
FILE_PATH="${DATA_DIR}${FILE_NAME}"

if [ "$DATA_TYPE" = "preprocessed_11k" ] || [ "$DATA_TYPE" = "preprocessed_212k" ]; then
    echo "-> preprocessed_11k or 212k"
    S3_URL="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/${FILE_NAME}"
elif [ "$DATA_TYPE" = "preprocessed_2256k" ]; then
    S3_URL="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.25plus/${FILE_NAME}"
else
    echo "Something wrong in data folder name"
    exit
fi

wget $S3_URL -O $FILE_PATH
tar -xvzf $FILE_PATH -C $DATA_DIR
echo "downloaded to ${FILE_UNZIP_DIR}"

2 一个脚本可以用来验证代码的可执行性,并找到与你的GPU匹配批处理大小。
批量大小为8 (=4×2),训练BK-SDM-Base 20次迭代大约需要5分钟和22GB的GPU内存

bash scripts/kd_train_toy.sh
MODEL_NAME="CompVis/stable-diffusion-v1-4"
TRAIN_DATA_DIR="./data/laion_aes/preprocessed_11k" # please adjust it if needed
UNET_CONFIG_PATH="./src/unet_config"

UNET_NAME="bk_small" # option: ["bk_base", "bk_small", "bk_tiny"]
OUTPUT_DIR="./results/toy_"$UNET_NAME # please adjust it if needed

BATCH_SIZE=2
GRAD_ACCUMULATION=4

StartTime=$(date +%s)

CUDA_VISIBLE_DEVICES=1 accelerate launch src/kd_train_text_to_image.py 
  --pretrained_model_name_or_path $MODEL_NAME 
  --train_data_dir $TRAIN_DATA_DIR
  --use_ema 
  --resolution 512 --center_crop --random_flip 
  --train_batch_size $BATCH_SIZE 
  --gradient_checkpointing 
  --mixed_precision="fp16" 
  --learning_rate 5e-05 
  --max_grad_norm 1 
  --lr_scheduler="constant" --lr_warmup_steps=0 
  --report_to="all" 
  --max_train_steps=20 
  --seed 1234 
  --gradient_accumulation_steps $GRAD_ACCUMULATION 
  --checkpointing_steps 5 
  --valid_steps 5 
  --lambda_sd 1.0 --lambda_kd_output 1.0 --lambda_kd_feat 1.0 
  --use_copy_weight_from_teacher 
  --unet_config_path $UNET_CONFIG_PATH --unet_config_name $UNET_NAME 
  --output_dir $OUTPUT_DIR


EndTime=$(date +%s)
echo "** KD training takes $(($EndTime - $StartTime)) seconds."

单GPU训练BK-SDM{Base, Small, Tiny}-0.22M数据训练
 

bash scripts/get_laion_data.sh preprocessed_212k
bash scripts/kd_train.sh

1 下载数据集preprocessed_212k
2 训练kd_train.sh
(256batch 训练BD-SM-Base 50K轮次需要300hours/53G单卡)
(64batch 训练BD-SM-Base 50K轮次需要60hours/28G单卡) 不理解
 

单GPU训练BK-SDM{Base, Small, Tiny}-2.3M数据训练

原文地址:https://blog.csdn.net/zjc910997316/article/details/134720277

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_43176.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注