本文介绍: 进程独有类型的 TLB:用户地址空间每个进程独立的地址空间。从 prev 进程切换next 进程时,TLB 中缓存prev 进程相关数据对于 next 进程是无用的,因此可以刷新。是什么,它描述一个进程切换时,CPU所需要保存寄存器,也称为硬件上下文,ARM体系下的cpu_context保存了以下寄存器,将上次next进程保存cpu_context的值。全局类型的 TLB:内核空间是所有进程共享空间,因此这部分空间虚拟地址到物园理地址的翻译是不会变化的,可以理解全局的。

一. 概述

最近初学ebpf时,使用到挂载finish_task_switch统计内核线程运行时间,遂进入内核源码对其进行学习分析

finish_task_switchcontext_switch调用,其功能完成进程切换的收尾工作比如地址空间清理。而context_switch是进程切换的核心部分,其由两部分组成:

  1. 切换页全局目录一个新的地址空间(switch_mm)。
  2. 切换内核堆栈硬件上下文(switch_to)。

context_switch代码如下

static __always_inline struct rq *context_switch(struct rq *rq, struct task_struct *prev,
        struct task_struct *next, struct rq_flags *rf)
{
 prepare_task_switch(rq, prev, next);//执行进程切换的准备工作。
 arch_start_context_switch(prev);
 if (!next->mm) {                       // to kernel
  enter_lazy_tlb(prev->active_mm, next);//通知处理器架构需要切换用户虚拟地址空间,这种加速进程切换计数称为惰性TLB
  next->active_mm = prev->active_mm;//继承前一个进程的内存描述符
  if (prev->mm)                           // from user
   mmgrab(prev->active_mm);//增加前一个进程的活跃地址空间的引用计数,以确保地址空间在进程切换后仍然有效
  else  //from kernel
   prev->active_mm = NULL;
 } else {                                        // to user
  membarrier_switch_mm(rq, prev->active_mm, next->mm);
  switch_mm_irqs_off(prev->active_mm, next->mm, next);//切换地址空间
  if (!prev->mm) {                        // from kernel
   rq->prev_mm = prev->active_mm;
   prev->active_mm = NULL;
  }
 }
 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
 prepare_lock_switch(rq, next, rf);
 switch_to(prev, next, prev);
 barrier();
 return finish_task_switch(prev);
}

分析这段源码之前,我们首先需要知道的是,context_switch( )函数建立next的地址空间。在task struct结构体中有这样两个字段:mm和active_mm。进程描述符active_mm字段指向进程所使用内存描述符,而mm字段指向进程所拥有的内存描述符。对于一般的进程,这两个字段有相同的地址,但是,内核线程没有自己的地址空间而且它的 mm字段总是被设置为 NULL

context_switch( )函数实现:如果next是一个内核线程,那么它使用prev所使用的地址空间。

具体实现流程

  1. prepare_task_switch执行进程切换的准备工作,包括处理器架构相关准备工作。
  2. 判断next进程是否有内存描述符(即是否指向内核空间):

二.switch_mm

对于用户进程需要完成用户空间的切换,switch_mm_irqs_off函数完成这个任务,其是与体系架构相关的。

ARM架构下的进程地址空间切换实际上是通过设置页表基址寄存器TTBR0完成的。每个进程拥有整个系统虚拟地址空间,但并不会真正占用所有的物理地址空间,而是需要通过页表转换完成物理地址的访问。页表转换基址信息存放在页表基址寄存器TTBR0中。

TTBR0寄存器指示了进程页全局目录表(PGD)的基址,PGD又指示了页表项(PTE)的基址,而PTE则指示了对应物理地址(PA)。由于每个进程的PGD是不同的,因此不同进程的虚拟内存对应物理地址隔离开来。实质上,进程切换就是完成了对TTBR0寄存器的重新设置,以切换到新进程的地址空间。

进程地址空间ASID

switch_mm_irqs_off函数中最主要的一个函数check_and_switch_context(),完成与体系结构相关硬件设置。MMU在做地址翻译时,需要访问物理内存中的页表映射,每一级页表映射都需要访问一次内存,而内存的访问对性能影响很大,因而效率很低。TLB(Translation Lookaside Buffer)是用于缓存MMU地址转换结果cache,访问cache找到物理地址比访问内存找物理地址快的多,因而TLB加快内存的访问效率

从Linux 内核角度看,地址空间可以分为内核地址空间和用户空间,TLB 可以分成全局类型和进程独有类型

全局类型的 TLB:内核空间是所有进程共享的空间,因此这部分空间的虚拟地址到物园理地址的翻译是不会变化的,可以理解为全局的。

进程独有类型的 TLB:用户地址空间是每个进程独立的地址空间。从 prev 进程切换到next 进程时,TLB 中缓存的 prev 进程的相关数据对于 next 进程是无用的,因此可以刷新。

为了支持进程独有类型的 TLB,ARM 架构出现了一种硬件解决方案,叫作进程地址空间**ASID(Address Space ID)**,通过使每个表项包含一个ASID,TLB 可以识别哪些 TLB 项是属于某个进程的。

ASID标识了每个TLB entry所属的进程,这样可以保证不同进程之间的TLB entry不会互相干扰,因而避免了切换进程时将TLB刷新的问题。所以ASID作用避免了进程切换时TLB的频繁刷新。

  资料直通车:Linux内核源码技术学习路线+视频教程内核源码

学习直通车:Linuxc/c++高级开发【直播公开课】

零声白金VIP体验卡:零声白金VIP体验卡(含基础架构/高性能存储/golang/QT/音视频/Linux内核)

三.switch_to

switch_to函数完成了内核空间及寄存器的切换,switch_to用到__switch_to,其代码如下

#define switch_to(prev,next,last)    
do {         
 __complete_pending_tlbi();     
 if (IS_ENABLED(CONFIG_CURRENT_POINTER_IN_TPIDRURO) || is_smp()) 
  __this_cpu_write(__entry_task, next);   
 last = __switch_to(prev,task_thread_info(prev), task_thread_info(next)); 
} while (0)

__switch_to汇编实现如下,三个参数分别为:

**r0:移出进程prev的task_structr1:移出进程prev的thread_infor2:**移入进程next的thread_info

ENTRY(__switch_to)
 UNWIND(.fnstart	)
 UNWIND(.cantunwind	)
	add	ip, r1, #TI_CPU_SAVE
 ARM(	stmia	ip!, {r4 - sl, fp, sp, lr} )	@ Store most regs on stack
 THUMB(	stmia	ip!, {r4 - sl, fp}	   )	@ Store most regs on stack
 THUMB(	str	sp, [ip], #4		   )
 THUMB(	str	lr, [ip], #4		   )
	ldr	r4, [r2, #TI_TP_VALUE]
	ldr	r5, [r2, #TI_TP_VALUE + 4]
#ifdef CONFIG_CPU_USE_DOMAINS
	mrc	p15, 0, r6, c3, c0, 0		@ Get domain register
	str	r6, [r1, #TI_CPU_DOMAIN]	@ Save old domain register
	ldr	r6, [r2, #TI_CPU_DOMAIN]
#endif
	switch_tls r1, r4, r5, r3, r7
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_SMP) && 
    !defined(CONFIG_STACKPROTECTOR_PER_TASK)
	ldr	r8, =__stack_chk_guard
	.if (TSK_STACK_CANARY > IMM12_MASK)
	add	r9, r2, #TSK_STACK_CANARY & ~IMM12_MASK
	ldr	r9, [r9, #TSK_STACK_CANARY & IMM12_MASK]
	.else
	ldr	r9, [r2, #TSK_STACK_CANARY & IMM12_MASK]
	.endif
#endif
	mov	r7, r2				@ Preserve 'next'
#ifdef CONFIG_CPU_USE_DOMAINS
	mcr	p15, 0, r6, c3, c0, 0		@ Set domain register
#endif
	mov	r5, r0
	add	r4, r2, #TI_CPU_SAVE
	ldr	r0, =thread_notify_head
	mov	r1, #THREAD_NOTIFY_SWITCH
	bl	atomic_notifier_call_chain
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_SMP) && 
    !defined(CONFIG_STACKPROTECTOR_PER_TASK)
	str	r9, [r8]
#endif
	mov	r0, r5
#if !defined(CONFIG_THUMB2_KERNEL) && !defined(CONFIG_VMAP_STACK)
	set_current r7, r8
	ldmia	r4, {r4 - sl, fp, sp, pc}	@ Load all regs saved previously
#else
	mov	r1, r7
	ldmia	r4, {r4 - sl, fp, ip, lr}	@ Load all regs saved previously
#ifdef CONFIG_VMAP_STACK
	ldr	r2, [ip]
#endif
	set_current r1, r2
	mov	sp, ip
	ret	lr
#endif
 UNWIND(.fnend		)
ENDPROC(__switch_to)

我们分析几句关键性的语句

add ip, r1, #TI_CPU_SAVE

这句话将IP寄存器值为r1+ TI_CPU_SAVE,r1即刚刚传入的参数prev->thread_info,TI_CPU_SAVE是cpu_context成员thread_info中的偏移接下来要将当前的寄存器值保存在这里

我们来看看cpu_context是什么,它描述了一个进程切换时,CPU所需要保存的寄存器,也称为硬件上下文,ARM体系下的cpu_context保存了以下寄存器,将上次next进程保存的cpu_context的值恢复硬件存器中,就完成了进程的切换。

struct cpu_context {
 unsigned long x19;
 unsigned long x20;
 unsigned long x21;
 unsigned long x22;
 unsigned long x23;
 unsigned long x24;
 unsigned long x25;
 unsigned long x26;
 unsigned long x27;
 unsigned long x28;
 unsigned long fp;
 unsigned long sp;
 unsigned long pc;
};

接着往下看。

 ARM( stmia ip!, {r4 - sl, fp, sp, lr} )

这是将r4 – sl, fp, sp, lr寄存器中内容保存到IP寄存器所指向内存地址,即prev->thread_info->cpu_context,这相当于保存了prev进程运行时的寄存器上下文

接下来都是在做将寄存器保存到内存,内存地址不断递增,且回写到IP寄存器。

add r4, r2, #TI_CPU_SAVE

这句话实现r4寄存器保存了next->thread_info->cpu_context的地址。

ldmia r4, {r4 - sl, fp, sp, pc}
ldmia r4, {r4 - sl, fp, ip, lr}

这是将next->thread_info->cpu_context的数据加载到r4 – sl, fp, sp, lr,pc寄存器中。next->thread_info->cpu_context->sp存入寄存器,相当于内核栈切换完成,next->thread_info->cpu_context->pc存入寄存器PC,相当于跳转到next进程运行

4.完成切换

在经历以上步骤后,CPU上执行的进程已经变成了next,由它执行finish_task_switch,完成切换后的清理工作,比如当之前的 mm 不再被引用时,将其释放掉,如果上一个进程的状态为 DEAD,需要释放掉上一个进程的相关资源,同时还会打开schedule 前期禁止的中断

5.进程切换调用图示

小结

作为一个学习eBPF技术的初学者,我觉得要想深入了解操作系统性能数据捕获机制,是必须要深入研究内核源码的。因为只有了解挂载点的执行时机,才能更好地理解eBPF在内核中的运行机制

发现学习eBPF技术与深入研究内核知识结合是非常明智的选择通过这样的方式不仅可以掌握eBPF的技术细节,还可以深入了解操作系统内部工作原理。这次学习让我获得了丰富的经验和知识,同时也加深了我对操作系统内部工作原理的认识。

原文作者:张新谊

原文地址:https://blog.csdn.net/youzhangjing_/article/details/134737047

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_43408.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注