本文介绍: Pandas 和 Numpy 是数据挖掘和数据科学中广泛使用的工具,但有时人们会对 None 和 NaN 感到困惑,它们非常相似但略有不同的数据类型。在这里,我们通过一些示例彻底把问题弄清楚。
Pandas 和 Numpy 是数据挖掘和数据科学中广泛使用的工具,但有时人们会对 None 和 NaN 感到困惑,它们非常相似但略有不同的数据类型。 在这里,我们通过一些示例彻底把问题弄清楚。
主要区别
动手测试
在下面的测试中,None 值会自动转换为 NaN 值,因为该list中的其他数值是数字, Pandas 自动将 None 转换为 NaN。NaN类型对于很多算术操作来更简单,因此被优先考虑。
在下面的测试中,该list系列中的另一个值是一个字符串,因此 None 值保持为 None 值。 这使得整个系列对象类型。
None 类型会导致更多的数值操作错误
为什么我们说,使用 NaN 类型对于许多常用操作会更有利?
因为NaN对许多算术运算来说是合法的。 例如,下面涉及None的操作会报错:
但如果是NaN类型,就不会报错。
怎么查看dataframe中的数值是None或者NaN
AI好书推荐
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。