图像以任意点(x,y)为旋转中心、以旋转角度 顺时针旋转,可以先将原点平移到旋转中心(x,y),再对原点进行旋转处理,最后反向平移回坐标原点。
OpenCV中的函数cv.getRotationMatrix2D可以计算以任意点为中心的旋转变换矩阵。
函数原型
函数cv.getRotationMatrix2D能根据旋转中心和旋转角度计算旋转变换矩阵M:
M
=
[
α
β
(
1
−
α
)
−
β
y
−
β
α
β
+
(
1
−
α
)
y
]
M = begin{bmatrix} alpha & beta &(1-alpha)x-beta y\ -beta &alpha &beta x +(1-alpha) y end{bmatrix}
M=[α−ββα(1−α)x−βyβx+(1−α)y]
参数说明
- center:旋转中心坐标,格式为元组(x,y)。
- angle:旋转角度,角度制,以逆时针方向旋转。
- scale:缩放系数,是浮点型数据。
- M:旋转变换矩阵,是形状为(2,3)、类型为np.float32的Numpy数组。
注意问题
W
r
o
t
=
w
c
o
s
θ
+
h
s
i
n
θ
H
r
o
t
=
h
c
o
s
θ
+
w
s
i
n
θ
W_{rot} = w cos theta+ h sin theta \ H_{rot} = h cos theta+ w sin theta
Wrot=wcosθ+hsinθHrot=hcosθ+wsinθ
式中,w、h分别为原始图像的宽度与高度; 、 分别为旋转图像的宽度与高度。
函数cv.rotate用于直角旋转,旋转角度为90度、180度或270度。该方法通过矩阵转置实现,运行速度极快。
函数原型
参数说明
- src:输入图像,是Numpy数组。
- dst:输出图像,类型与src相同,图像尺寸由旋转角度确定。
- rotateCode:旋转标志符。
- ROTATE_90_CLOCKWISE:顺时针旋转90度。
- ROTATE_180:顺时针旋转180度。
- ROTATE_90_COUNTERCLOCKWISE:顺时针旋转270度。
注意问题
旋转角度为180度时,输出图像的尺寸与输入图像的尺寸相同;旋转角度为90度或180度时,输出图像的高度和宽度分别等于输入图像的宽度和高度。
【例程0603】图像的旋转
本例程介绍以原点为旋转中心、以任意点为旋转中心旋转图像,以及图像的直角旋转。
# 【0603】图像的旋转
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
if __name__ == '__main__':
img = cv.imread("../images/Fig0301.png") # 读取彩色图像(BGR)
height, width = img.shape[:2] # 图像的高度和宽度
# (1) 以原点为旋转中心
x0, y0 = 0, 0 # 以左上角顶点 (0,0) 作为旋转中心
theta, scale = 30, 1.0 # 逆时针旋转 30 度,缩放系数 1.0
MAR0 = cv.getRotationMatrix2D((x0,y0), theta, scale) # 旋转变换矩阵
imgRot1 = cv.warpAffine(img, MAR0, (width, height))
# (2) 以任意点为旋转中心
x0, y0 = width//2, height//2 # 以图像中心作为旋转中心
angle = theta * np.pi/180 # 弧度->角度
wRot = int(width * np.cos(angle) + height * np.sin(angle)) # 调整宽度
hRot = int(height * np.cos(angle) + width * np.sin(angle)) # 调整高度
scale = width/wRot # 根据 wRot 调整缩放系数
MAR1 = cv.getRotationMatrix2D((x0,y0), theta, 1.0) # 逆时针旋转 30 度,缩放系数 1.0
MAR2 = cv.getRotationMatrix2D((x0,y0), theta, scale) # 逆时针旋转 30 度,缩放比例 scale
imgRot2 = cv.warpAffine(img, MAR1, (height, width), borderValue=(255,255,255)) # 白色填充
imgRot3 = cv.warpAffine(img, MAR2, (height, width)) # 调整缩放系数,以保留原始图像的内容
print(img.shape, imgRot2.shape, imgRot3.shape, scale)
# (3) 图像的直角旋转
imgRot90 = cv.rotate(img, cv.ROTATE_90_CLOCKWISE) # 顺时针旋转 90度
imgRot180 = cv.rotate(img, cv.ROTATE_180) # 顺时针旋转 180度
imgRot270 = cv.rotate(img, cv.ROTATE_90_COUNTERCLOCKWISE) # 顺时针旋转 270度
plt.figure(figsize=(9, 6))
plt.subplot(231), plt.title("1.Rotate around the origin"), plt.axis('off')
plt.imshow(cv.cvtColor(imgRot1, cv.COLOR_BGR2RGB))
plt.subplot(232), plt.title("2.Rotate around the center"), plt.axis('off')
plt.imshow(cv.cvtColor(imgRot2, cv.COLOR_BGR2RGB))
plt.subplot(233), plt.title("3.Rotate and resize"), plt.axis('off')
plt.imshow(cv.cvtColor(imgRot3, cv.COLOR_BGR2RGB))
plt.subplot(234), plt.title("4.Rotate 90 degrees"), plt.axis('off')
plt.imshow(cv.cvtColor(imgRot90, cv.COLOR_BGR2RGB))
plt.subplot(235), plt.title("5.Rotate 180 degrees"), plt.axis('off')
plt.imshow(cv.cvtColor(imgRot180, cv.COLOR_BGR2RGB))
plt.subplot(236), plt.title("6.Rotate 270 degrees"), plt.axis('off')
plt.imshow(cv.cvtColor(imgRot270, cv.COLOR_BGR2RGB))
plt.tight_layout()
plt.show()
程序说明:
运行结果,图像的旋转如图6-3所示。
(1) 图6-3(1)~(3)用函数cv.getRotationMatrix2D计算旋转变换矩阵后,通过函数cv.warpAffine计算旋转变换图像。图6-3(1)以图像原点,即左上角为中心旋转,图6-3(2)和图6-3(3)围绕图像中心点旋转变换。
(2) 图像尺寸不变,中心旋转后四角像素被切除(见图6-3(2))。在计算旋转变换矩阵时使用了缩放系数,使旋转图像保留了原始图像的内容(见图6-3(3))。
(3) 图6-3(4)~(6)所示都是直角旋转,使用函数cv.rotate通过矩阵转置实现。
*图6-3 图像的旋转
版权声明:
youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/134317103)
Copyright 2023 youcans, XUPT
Crated:2023-11-11
欢迎关注本书CSDN独家连载专栏
《数字图像处理-OpenCV/Python》连载: https://blog.csdn.net/youcans/category_12418787.html
原文地址:https://blog.csdn.net/youcans/article/details/134317103
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_4471.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!