职业人群体检数据分析
有的职业危害因素会对人体血液等系统产生影响。下面针对一次职业人群体检的部分数据进行分析
2:获取数据
3:分析数据
DataFrame.dropna(axis=0, how=’any‘, thresh=None, subset=None, inplace=False)
axis:维度,axis=0表示index行,axis=1表示columns列,默认为0
how:”all“表示这一行或列中的元素全部缺失(为nan)才删除这一行或列,”any“表示这一行或列中只要有元素缺失,就删除这一行或列
subset:在某些列的子集中选择出现了缺失值的列删除,不在子集中的含有缺失值得列或行不会删除(有axis决定是行还是列)
删除身份证号为空的数据
将“开始从事某工作年份”规范为4位数字年份,如“2018”,并将列名修改为“参加工作时间
增加列“工龄”(体检年份–参加工作时间)和“年龄”(体检时间-出生年份)两列
然后可以看到参加工作时间之一列的缺失值已经删除,同时也看到体检年份还有38个缺失值 也进行删除
身份证号,参加工作时间以及体检年份的数据类型都是object,需要进行类型转换,统一转化为int64类型,另外,体检年份这一列有很多异常数据,很多年份后都有年字,对体检年份数据进行时间提取
统计不同年龄段的白细胞计数,并画出柱状图,年龄段划分为:小于或等于30岁,31-40岁,41-50岁以及大于50岁4个
经过上面这一系列工作,可以很清楚的看出数据的一些分布特征 有助于后续的解决方案
代码
部分代码如下 需要全部代码请点赞关注收藏后评论区留言私信~~~
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
%matplotlib inline
df = pd.read_excel("testdata.xls")#这个会直接默认读取到这个Excel的第一个表单
data =df.head()#默认读取前5行的数据
data
df.info()
df.dtypes
df.shape
df.isnull().sum()
df.dropnaaxis=1, how='all',inplace= True)#将全部项都是nan的列删除
df.head()
df.dropna(how='any',subset=['身份证号'],inplace= True)
df.isnul().sum()
df1 = df
df.shape
df.开始从事某工作年份 = df.开始从事某工作年份.str[0:4]
df.rename(columns={"开始从事某工作年份": "参加工作时间"},inplace=True)
df.head()
df.isnull().sum()
df1 = df.dropna(subset=['参加工作时间'],how='any')
df1.isnull().sum()
df1.isnull().sum()
df2 = df1.dropna(subset=['体检年份'],how='any')
# ()
df2.isnull().sum()
#参加工作时间转换为int64类型
#首将体检年份转换为str类型
data['体检年份'] = data.体检年份.astype('str')
#切片取前4位值之后再将体检年份转换为int64类型
data.体检年份 = data.体检年份.str[0:4].astype("int64")
#取身份证的第4位-第7位,并转换为int64类型
data["出生年份"] = data.身份证号.str[4:8].astype('int64')
d.head()
data.参加工作时间 = data.参加工作时间.astype('int64')
data['体检年份'] = data.体检年份.astype('str')
data.体检年份 = data.体检年份.str[0:4].astype("int64")
data["出生年份"] = data.身份证号.str[4:8].astype('int64')
data.head()
data = data.eval('工龄 = 体检年份-参加工作时间')
data = data.eval("年龄= 体检年份- 出生年份")
data.head()
import matplotlib
matplotlib.rcParams['font.size'] = 15
matplotlib.rcParams['font.family'] = 'SimHei'
# mean.plot(kind='bar') #series.plot(kind='bar')
mean.plot.bar()
plt.xticks(rotation=0)
plt.ylabel("白细胞均值")
data['年龄段'] = pd.cut(data.年龄, bins=[0,30,40,50, 100])
count = data.groupby('年龄段')['白细胞计数'].mean()
count
count.plot(kind = "bar")
plt.xticksotation=30)
plt.ylabel("白细胞计数均值")
原文地址:https://blog.csdn.net/jiebaoshayebuhui/article/details/128729003
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_45786.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!