系列文章目录

  1. pytorch学习1-数据加载以及Tensorboard可视化工具
  2. pytorch学习2-Transforms主要方法使用
  3. pytorch学习3-torchvisin和Dataloader的使用
  4. pytorch学习4-简易卷积实现
  5. pytorch学习5-最大池化层的使用
  6. pytorch学习6-非线性变换(ReLU和sigmoid)
  7. pytorch学习7-序列模型搭建
  8. pytorch学习8-损失函数与反向传播
  9. pytorch学习9-优化器学习
  10. pytorch学习10-网络模型的保存和加载
  11. pytorch学习11-完整的模型训练过程


一、非线性变换(ReLU和sigmoid

import torch
import torchvision.datasets
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

input=torch.tensor([
    [1,-0.5],
    [-1,3]
])
output=torch.reshape(input,(-1,1,2,2))
print(output.shape)

dataset=torchvision.datasets.CIFAR10("./data6",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)
class Mynn(nn.Module):
    def __init__(self):
        super(Mynn,self).__init__()
        self.relu1=ReLU()#使用ReLU激活函数,inplace参数代表是不是覆盖原始数据,默认为False
        self.sigmoid=Sigmoid()##使用sigmoid激活函数
    # def forward(self,input):
    #     output=self.relu1(input)
    #     return output
    def forward(self,input):
        output=self.sigmoid(input)
        return output
mynn=Mynn()
writer=SummaryWriter("logs6")
step=0
for data in dataloader:#dataloader的每一批次,既包含图像包含标签,所以要他们分出来单独处理
    imgs,taiget=data
    writer.add_images("我是输入",imgs,step)
    output=mynn(imgs)
    writer.add_images("我是输出",output,step)
    step+=1
writer.close()

总结

以上就是今天要讲的内容非线性变换(ReLU和sigmoid

原文地址:https://blog.csdn.net/magic171/article/details/134802350

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_48056.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注