本文介绍: input经过矩阵计算得到权重att后,经过masked_fill掩码处理,得到了掩码的att权重,然后经过softmax归一化处理最后v乘积得到了每个output字符用前面input字符权重加权的表示,最后经过矩阵变换成voc_size大小输出,就是我们要求的output输出最后我们计算得到output和target进行交叉熵损失函数计算,得到最终的loss,从而进行梯度下降优化整个模型。是的你没有看错,输入输出就是一个字符的错位。sentence:如何理解gpt的原理。

原理

gpt就是一个类似于成语接龙的游戏,根据之前的n个字符预测下一个字符,那么gpt的输入和输出是如何构造的呢?比如给一个句子如下:
sentence:如何理解gpt的原理。
构造gpt输入输入:
input:如何理解gpt的原
output:何理解gpt的原理
是的你没有看错,输入输出就是一个字符的错位。
那么输入时如何经过selfmaskattention来得到输出的呢?

    def forward(self, x):
        B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        xx = self.c_attn(x)
        q, k, v  = xx.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        if self.flash:
            # efficient attention using Flash Attention CUDA kernels
            y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
        else:
            # manual implementation of attention
            kt = k.transpose(-2, -1)
            att = (q @ kt) * (1.0 / math.sqrt(k.size(-1)))
            bais = self.bias
            bais = bais[:,:,:T,:T]
            att = att.masked_fill(bais == 0, float('-inf'))
            att = F.softmax(att, dim=-1)
            att = self.attn_dropout(att)
            y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side

        # output projection
        y = self.resid_dropout(self.c_proj(y))
        return y

input经过矩阵计算得到权重att后,经过masked_fill掩码处理,得到了掩码的att权重,然后经过softmax归一化处理最后的v乘积得到了每个output字符用前面input字符权重加权的表示,最后经过矩阵变换成voc_size大小的输出,就是我们要求的output输出,最后把我们计算得到output和target进行交叉熵损失函数计算,得到最终的loss,从而进行梯度下降优化整个模型

原文地址:https://blog.csdn.net/WitsMakeMen/article/details/134621699

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_4851.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注