本文介绍: 最快的版本(比其他版本快30至300倍)直接使用C语言编写,但需要数组作为输入使用精度类型),并且(可选地)通过max_dist设置为欧几里得距离的上界来剪枝计算这个其实我们前面warping_path是一样的。距离函数具有线性空间复杂度但二次时间复杂度可以ds转化成上三角矩阵的值,节省空间输入一个列表列表

1 介绍

2  DTW举例

2.1 绘制warping 路径

from dtaidistance import dtw
from dtaidistance import dtw_visualisation as dtwvis
import numpy as np
import matplotlib.pyplot as plt

s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
path=dtw.warping_path(s1,s2)
dtwvis.plot_warping(s1,s2,path)

path
'''
[(0, 0),
 (1, 0),
 (2, 1),
 (3, 2),
 (3, 3),
 (4, 4),
 (5, 5),
 (6, 5),
 (7, 6),
 (8, 7),
 (9, 8),
 (10, 9),
 (11, 10),
 (11, 11),
 (12, 12)]
'''

 2.2 计算dtw距离

s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
dtw.distance(s1,s2)
#1.4142135623730951

2.3 快速版本计算dtw距离

最快的版本(比其他版本快30至300倍)直接使用C语言编写,但需要数组作为输入使用精度类型),并且(可选地)通过max_dist设置为欧几里得距离的上界来剪枝计算

s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
dtw.distance_fast(s1,s2)
#1.4142135623730951

s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
dtw.distance_fast(s1,s2,use_pruning=True)
#1.4142135623730951

2.4 降低DTW 复杂度

距离函数具有线性空间复杂度但二次时间复杂度。

2.5 得到累计成本矩阵并绘制之

s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
distance,matrix=dtw.warping_paths(s1,s2)
distance
#1.4142135623730951

matrix.shape
#(14, 14)

2.5.1 求最佳路径

dtw.best_path(matrix)
'''
[(0, 0),
 (1, 0),
 (2, 1),
 (3, 2),
 (3, 3),
 (4, 4),
 (5, 5),
 (6, 5),
 (7, 6),
 (8, 7),
 (9, 8),
 (10, 9),
 (11, 10),
 (11, 11),
 (12, 12)]
'''

这个其实我们前面warping_path是一样的

dtw.warping_path(s1,s2)
'''
dtw.warping_path(s1,s2)
'''

2.5.2 可视化结果

dtwvis.plot_warpingpaths(s1,s2,matrix,dtw.warping_path(s1,s2))

2.6 多个时间序列的DTW

from dtaidistance import dtw
import numpy as np
timeseries = [
    np.array([0, 0, 1, 2, 1, 0, 1, 0, 0], dtype=np.double),
    np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0]),
    np.array([0.0, 0, 1, 2, 1, 0, 0, 0])]
ds = dtw.distance_matrix(timeseries)
ds
'''
array([[0.        , 1.41421356, 1.        ],
       [1.41421356, 0.        , 1.        ],
       [1.        , 1.        , 0.        ]])
'''

输入为一个列表列表

2.6.1 compact=True

可以ds转化成上三角矩阵的值,节省空间

from dtaidistance import dtw
import numpy as np
timeseries = [
    np.array([0, 0, 1, 2, 1, 0, 1, 0, 0], dtype=np.double),
    np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0]),
    np.array([0.0, 0, 1, 2, 1, 0, 0, 0])]
ds = dtw.distance_matrix(timeseries,compact=True)
ds
#array('d', [1.4142135623730951, 1.0, 1.0])

原文地址:https://blog.csdn.net/qq_40206371/article/details/134818142

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_48636.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注