本文介绍: 文将介绍如何使用Apache Spark以及JSON4S库,将CSV数据转换为层级结构的JSON格式通过分析国家、性别、种族和民族等信息我们展示如何构建层级结构节点,并将其转换为易于理解处理的JSON格式。这篇博客将帮助读者了解如何利用Spark强大的数据处理功能,以及在JSON处理方面的最佳实践

代码补充了!兄弟萌

造的样例数据

val data = Seq(
  ("USA", "Male", "Asian", "Chinese"),
  ("USA", "Female", "Asian", "Chinese"),
  ("USA", "Male", "Black", "African"),
  ("USA", "Female", "Black", "African"),
  ("USA", "Male", "White", "European"),
  ("USA", "Female", "White", "European"),
  ("Europe", "Male", "Asian", "Chinese"),
  ("Europe", "Female", "Asian", "Chinese"),
  ("Europe", "Male", "Black", "African"),
  ("Europe", "Female", "Black", "African"),
  ("Europe", "Male", "White", "European"),
  ("Europe", "Female", "White", "European")
)

代码核心逻辑

import org.apache.hadoop.io.serializer.Serialization
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.types.{StringType, StructField, StructType}

import org.apache.spark.sql.{Dataset, Row, SparkSession}
import org.json4s.NoTypeHints
import org.json4s.DefaultFormats
import org.json4s.jackson.Serialization.writePretty
 定义Node类
//case class Node(title: String, key: String, children: Seq[Node])
/*作者:Matrix70
博客地址https://blog.csdn.net/qq_52128187?type=blog
时间:20231205*/
object Parent_child_v7_xuqiu {
  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setAppName("Parent_child_v3").setMaster("local[1]")
    val sc = new SparkContext(conf)
    val spark = SparkSession.builder.appName("Parent_child_v3").getOrCreate()

    import spark.implicits._

    val df1 = sc.textFile("C:\zzcode\workplace\src\main\data\country")

    val schema = StructType(
      Array(
        StructField("Country", StringType, nullable = true),
        StructField("Gender", StringType, nullable = true),
        StructField("Ethnicity", StringType, nullable = true),
        StructField("Race", StringType, nullable = true)
      )
    )

    val rowRDD = df1.map(line => {
      val parts = line.split(",")
      Row(parts(0), parts(1), parts(2), parts(3))
    })

    val df = spark.createDataFrame(rowRDD, schema)

    df.show()
    // 构建节点层级结构转换为JSON格式
    def toHierarchy(df: Dataset[Row]): String = {
      def buildHierarchy(country: String): Node = {
        val uniqueGenders = df.filter($"Country" === country).select("Gender").distinct().as[String].collect()
        val genderNodes = uniqueGenders.map { gender =>
          val filteredRows = df.filter($"Country" === country && $"Gender" === gender)
          val ethnicityNodes = filteredRows.select("Ethnicity").distinct().as[String].collect().map { ethnicity =>
            val children = filteredRows.filter($"Ethnicity" === ethnicity).select("Race").as[String].collect().map(race => Node(race, s"$country-$gender-$ethnicity-$race", Seq.empty))
            Node(ethnicity, s"$country-$gender-$ethnicity", children)
          }
          Node(gender, s"$country-$gender", ethnicityNodes)
        }
        Node(country, country, genderNodes)
      }

      val uniqueCountries = df.select("Country").distinct().as[String].collect()
      val roots = uniqueCountries.map(buildHierarchy)

      implicit val formats: DefaultFormats.type = DefaultFormats
      writePretty(roots)
    }

    // 调用toHierarchy并打印结果
    val resultJSON = toHierarchy(df)
    println(resultJSON)

    spark.stop()
  }
}

提供给前端html结构样例

代码生成结果提供给前端的格式

[
  {
    "title": "USA",
    "key": "USA",
    "children": [
      {
        "title": "Male",
        "key": "USA-Male",
        "children": [
          {
            "title": "Asian",
            "key": "USA-Male-Asian",
            "children": [
              {
                "title": "Chinese",
                "key": "USA-Male-Asian-Chinese",
                "children": []
              }
            ]
          },
          {
            "title": "Black",
            "key": "USA-Male-Black",
            "children": [
              {
                "title": "African",
                "key": "USA-Male-Black-African",
                "children": []
              }
            ]
          },
          {
            "title": "White",
            "key": "USA-Male-White",
            "children": [
              {
                "title": "European",
                "key": "USA-Male-White-European",
                "children": []
              }
            ]
          }
        ]
      },
      {
        "title": "Female",
        "key": "USA-Female",
        "children": [
          {
            "title": "Asian",
            "key": "USA-Female-Asian",
            "children": [
              {
                "title": "Chinese",
                "key": "USA-Female-Asian-Chinese",
                "children": []
              }
            ]
          },
          {
            "title": "Black",
            "key": "USA-Female-Black",
            "children": [
              {
                "title": "African",
                "key": "USA-Female-Black-African",
                "children": []
              }
            ]
          },
          {
            "title": "White",
            "key": "USA-Female-White",
            "children": [
              {
                "title": "European",
                "key": "USA-Female-White-European",
                "children": []
              }
            ]
          }
        ]
      }
    ]
  },
  {
    "title": "Europe",
    "key": "Europe",
    "children": [
      {
        "title": "Male",
        "key": "Europe-Male",
        "children": [
          {
            "title": "Asian",
            "key": "Europe-Male-Asian",
            "children": [
              {
                "title": "Chinese",
                "key": "Europe-Male-Asian-Chinese",
                "children": []
              }
            ]
          },
          {
            "title": "Black",
            "key": "Europe-Male-Black",
            "children": [
              {
                "title": "African",
                "key": "Europe-Male-Black-African",
                "children": []
              }
            ]
          },
          {
            "title": "White",
            "key": "Europe-Male-White",
            "children": [
              {
                "title": "European",
                "key": "Europe-Male-White-European",
                "children": []
              }
            ]
          }
        ]
      },
      {
        "title": "Female",
        "key": "Europe-Female",
        "children": [
          {
            "title": "Asian",
            "key": "Europe-Female-Asian",
            "children": [
              {
                "title": "Chinese",
                "key": "Europe-Female-Asian-Chinese",
                "children": []
              }
            ]
          },
          {
            "title": "Black",
            "key": "Europe-Female-Black",
            "children": [
              {
                "title": "African",
                "key": "Europe-Female-Black-African",
                "children": []
              }
            ]
          },
          {
            "title": "White",
            "key": "Europe-Female-White",
            "children": [
              {
                "title": "European",
                "key": "Europe-Female-White-European",
                "children": []
              }
            ]
          }
        ]
      }
    ]
  }
]
//https://blog.csdn.net/qq_52128187?type=blog

补充html文件

json生成前端界面展示代码可以保存本地文件,命名为html即可浏览器打开查看就是我上面的层级结构的样子了。

<!DOCTYPE html>
<html>
<head>
  <title>JSON to Tree Example</title>
  <script src="https://d3js.org/d3.v6.min.js"></script>
  <style>
    .node circle {
      fill: #fff;
      stroke: steelblue;
      stroke-width: 1.5px;
    }

    .node text {
      font-size: 12px;
    }
  </style>
</head>
<body>
  <div id="tree-container"></div>

<script>
// JSON字符串
const jsonStr = `{
  "title": "USA",
  "key": "USA",
  "children": [
    {
      "title": "Asian",
      "key": "USA-Asian",
      "children": [
        {
          "title": "Chinese",
          "key": "USA-Asian-Chinese",
          "children": [
            {
              "title": "Beijing",
              "key": "USA-Asian-Chinese-Beijing",
              "children": []
            }
          ]
        }
      ]
    },
    {
      "title": "Black",
      "key": "USA-Black",
      "children": [
        {
          "title": "African",
          "key": "USA-Black-African",
          "children": [
            {
              "title": "Nigeria",
              "key": "USA-Black-African-Nigeria",
              "children": []
            }
          ]
        }
      ]
    },
    {
      "title": "White",
      "key": "USA-White",
      "children": [
        {
          "title": "European",
          "key": "USA-White-European",
          "children": [
            {
              "title": "Italy",
              "key": "USA-White-European-Italy",
              "children": []
            }
          ]
        }
      ]
    }
  ]
}`;

// 解析JSON字符串树状结构
const data = JSON.parse(jsonStr);

// 创建绘图容器
const svg = d3.select("#tree-container")
  .append("svg")
  .attr("width", 500)
  .attr("height", 500);

// 创建布局
const treeLayout = d3.tree().size([400, 400]);

// 将数据转换为层级关系
const root = d3.hierarchy(data);

// 计算节点位置
treeLayout(root);

// 绘制节点链接
const nodes = root.descendants();
const links = root.links();

const nodeGroup = svg.selectAll(".node")
  .data(nodes)
  .enter()
  .append("g")
  .attr("transform", d => `translate(${d.y}, ${d.x})`);

nodeGroup.append("circle")
  .attr("r", 5)
  .style("fill", "#fff")
  .style("stroke", "steelblue")
  .style("stroke-width", "1.5px");

nodeGroup.append("text")
  .attr("x", 13)
  .attr("y", 4)
  .style("font-size", "12px")
  .text(d => d.data.title);

svg.selectAll(".link")
  .data(links)
  .enter()
  .append("path")
  .attr("class", "link")
  .attr("d", d => {
    return `M${d.source.y},${d.source.x}L${d.target.y},${d.target.x}`;
  })
  .style("fill", "none")
  .style("stroke", "#ccc")
  .style("stroke-width", "1px");
</script>
</body>
</html>

其实我要的结果就是匹配数据格式,如下图前端同事他们渲染后,基本就是这个样子

参考文章连接

Ant Design Vue — An enterprise-class UI components based on Ant Design and Vue.js这个网页树形控件的结构,给我提供一个基本构建思路

ok!!!

原文地址:https://blog.csdn.net/qq_52128187/article/details/134718284

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任

如若转载,请注明出处:http://www.7code.cn/show_49176.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注