本文介绍: 主要介绍Flink执行模式以及Flink作业提交过程拓扑图的生产和优化,还有作业调度和其中涉及的数据结构


一、Flink执行模式

Flink对流处理和批处理采用统一的处理方式执行模式可以通过execute.runtimemode配置。有三种可选的值:STREAMING:流模式,BATCH:批模式,AUTOMATIC:由系统决定。

1.流执行模式

在流模式下,所有任务需要一直在线运行,所以集群需要一次性分配足够的资源运行所有任务。这样每个任务可以立即执行新的记录,达到连续和低延迟的流处理。
流执行模式下,网络shuffle是流水式的,在网络层进行一些缓冲然后传递到下一个处理节点,在任务之间没有数据点。

2.批执行模式

在批处理模式下,作业可以一个阶段接一个阶段执行,集群只需要分配单个阶段资源可以运行任务。分阶段处理时Flink会将任务的中间结果保存到一些非永久性存储中,上游任务执行完毕可以下线,下游任务从存储中读取中间结果继续执行。

二、Flink拓扑图

1.基本概念

flink程序编写到提交过程中执行图的转化涉及很多概念,在进行介绍执行图之前先了解一下Job、Operation、Task、SubTask、Task Slot等。

2.拓扑图生成过程

Flink的应用程序是由flink算子组合而的dataflow所组成,Flink会将程序直接映射数据流图StreamGraph,在提交到集群前会优化生成JobGraph。JobManager会根据并发生成执行图ExecutionGraph,然后调度部署到TaskManager的TaskSlot中形成物理执行图。
在这里插入图片描述
Flink中从程序最后的物理执行分为四层:StreamGraph->JobGraph->ExecutionGraph->物理执行。

三、拓扑生成优化

1.应用程序

在这里插入图片描述
应用程序用用户自定义的算子组成,由输入算子、计算算子、输出算子三类组成。

2.逻辑视图

在这里插入图片描述
程序执行过程中,一个流可以有多个分区,也就是每个算子可以有多个子任务,每个任务并行的处理各自的数据。每个算子子任务的数量就是这个算子的并行度。

算子之间传输数据分为两种情况:

3.算子链

如果将每个算子都转化成一个任务,这样计算过程可能会需要线程切换、中间结果缓冲等,增加了调度开销和系统延迟,所以会把一些算子算作一个任务进行调度,可以减少开销和延迟。如果增加算子链优化后,逻辑执行图如下:

在这里插入图片描述

4.Task Slots

每个TaskManager都是一个JVM进程,包含的多个TaskSlot是线程,每个TaskSlot可以执行一个或者多个SubTask。
在这里插入图片描述
Flink支持SubTask共享slot,即来自同一个作业的SubTask由同一个TaskSlot执行。这样所需要的TaskSlot和作业并行度一致,可以更好的利用资源,增加并行度。

在这里插入图片描述

四、作业调度

1.调度

Flink集群中JobManager负责调度SubTask在TaskManager上的执行。TaskManager通过TaskSlot来定义执行资源,每个TaskSlot可以执行一个SubTask或者来自同一个作业的多个SubTask。
比如:由一个数据源、并行度为4的Map和并行度为3的Reduce组成的作业。那么在TaskManager实际分配资源如下。
在这里插入图片描述

2.拓扑图数据结构

在JobGraph中的Task由数据结构JobVertex表示,包含并行度和运行代码
在ExecutionGraph中的SubTask由数据结构ExecutionVertex表示,ExecutionVertex负责跟踪子任务的执行状态,而数据结构ExecutionJobVertex会负责跟踪任务的执行状态
在这里插入图片描述

3.Job状态转化

Flink 作业刚开始会处于 created 状态,然后切换running 状态,当所有任务都执行完之后会切换到 finished 状态。

Finishedcanceledfailed 会导致全局的终结状态,并且触发作业的清理。跟这些状态不同,suspended 状态只是一个局部的终结。局部的终结意味着作业的执行已经被对应的 JobManager 终结,但是集群中另外的 JobManager 依然可以从高可用存储获取作业信息并重启。因此一个处于 suspended 状态的作业不会被彻底清理掉。
在这里插入图片描述

4.Task状态转化

在整个 ExecutionGraph 执行期间,每个并行 task 都会经历多个阶段,从 created 状态到 finished 或 failed。下图展示了各种状态以及他们之间的转换关系。由于一个 task 可能会被执行多次(比如在异常恢复时),ExecutionVertex 的执行是由 Execution 来跟踪的,每个 ExecutionVertex 会记录当前的执行,以及之前的执行。
在这里插入图片描述

总结

主要介绍Flink执行模式以及Flink作业提交过程中拓扑图的生产和优化,还有作业调度和其中涉及的数据结构


参考链接

1.Flink官网

原文地址:https://blog.csdn.net/wlphlj/article/details/134647183

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_5175.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注