本文介绍: 卷积神经网络原理,卷积神经网络的回归分析
目录
背影
卷积神经网络CNN的原理
卷积神经网络CNN的定义
卷积神经网络CNN的神经元
卷积神经网络CNN的激活函数
卷积神经网络CNN的传递函数
卷积神经网络的回归分析
完整代码:卷积神经网络的回归分析(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/88695773
基本结构
主要参数
MATALB代码
结果图
展望
背影
现在生活,为节能减排,减少电能损耗,高压智能输电网是电网发展的趋势,本文基于卷积神经网络的回归分析
卷积神经网络CNN的原理
卷积神经网络CNN的定义
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial N
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。