经典卷积神经网络-AlexNet
一、背景介绍
2012 年, 出自论文《ImageNet Classification with Deep Convolutional Neural Networks》中的AlexNet被称为是首个真正意义上的深度卷积神经网络。这个模型的名字来源于论文第一作者的姓名 Alex Krizhevsky。AlexNet 使用了 8 层卷积神经网络,并以很大的优势赢得了 ImageNet 2012 图像识别挑战赛冠军。
二、AlexNet网络结构
如图所示,这是论文中作者给出的AlexNet网络结构,共有八层,包含五个卷积层和三个全连接层。吴恩达深度学习视频中给出的网络结构如下:
如图所示,AlexNet与LeNet有很多相似之处,但AlexNet要大的多。AlexNet是针对ImageNet数据集来建立的,所以其最后输出(Softmax)层有1000个神经元。LeNet大约包含6万个参数,而AlexNet大约包含6000万个参数。以下是AlexNet论文中的一些细节:
- 论文中的网络结构使用的原图输入为224 × 224,实际上进行了随机裁剪,实际大小为227 × 227。
- AlexNet使用了ReLU激活函数,比传统神经网络所选取的非线性饱和函数(如sigmoid函数,tanh函数)要快许多。
- 论文中采用了非常复杂的方法在两个GPU上进行训练,大致原理是这些层被分拆到两个不同的GPUs上,同时还有一个专门的方法用于两个GPUs进行交流。
- 采用局部响应归一化(LRN),可形成某种形式的横向抑制,从而提高网络的泛华能力。随着时间的推移,LRN 在深度学习中的应用逐渐减少,因为其他正则化技术,如批量归一化(Batch Normalization)等,通常表现更好且更易于训练。
- 池化方式采用overlapping pooling,即池化窗口的大小大于步长,使得每次池化都有重叠的部分。这种重叠的池化方式比传统无重叠的池化方式有着更好的效果,且可以避免过拟合现象的发生。
- 采用Dropout操作,Dropout操作会将概率小于0.5的每个隐层神经元的输出设为0,即去掉了一些神经节点,达到防止过拟合。
三、AlexNet的Pytorch实现
后面要将AlexNet应用到猫狗二分类问题上,所以对AlexNet网络做了一些修改,其实现代码如下:
import torch
from torch import nn
from torch.nn import Sequential
class AlexNet(nn.Module):
def __init__(self):
super().__init__()
# 五个卷积层提取特征
self.features = Sequential(
# 【1】号卷积层 + ReLU + LRN + 池化
nn.Conv2d(in_channels=3, out_channels=96, kernel_size=11, stride=4, padding=2),
nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=2),
nn.MaxPool2d(kernel_size=3, stride=2),
# 【2】号卷积层 + ReLU + LRN + 池化
nn.Conv2d(in_channels=96, out_channels=256, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=2),
nn.MaxPool2d(kernel_size=3, stride=2),
# 3个卷积层+RelU + 池化
nn.Conv2d(in_channels=256, out_channels=384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.classifier = Sequential(
# DP+1号线性层
nn.Dropout(p=0.5),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
# DP+2号线性层
nn.Dropout(p=0.5),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
# 输出层
nn.Linear(4096, 2)
)
def forward(self, x):
x = self.features(x)
# 作用类似Flatten 元素个数不变 每个元素都展平成一维的
x = x.view(-1, 256 * 6 * 6)
x = self.classifier(x)
return x
if __name__ == '__main__':
model = AlexNet()
print(model)
input = torch.ones((64, 3, 224, 224))
output = model(input)
print(output.shape)
四、案例:猫狗二分类问题
此次使用的猫狗分类图像一共25000张,猫狗分别有12500张。下载地址:https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/data,其中train文件夹中有带标签的图片25000张,猫狗各一半。因为test1文件夹中的图片没有带标签,所以我只使用了train文件夹,由于图片太多所以我只取了其中2000张(猫狗各1000张),并将其七三划分为了训练集和测试集。目录结构为:
CatVSDog:
----train_cat
----train_dog
----test_cat
----test_dog
自定义DataSet:
from torch.utils.data import Dataset
from PIL import Image
import torchvision
import os
class CatvsDogDataSet(Dataset):
def __init__(self, root_dir, label_dir, transform=None):
# 根目录 对应到一个train/test文件夹
self.root_dir = root_dir
# 标签目录就是数据文件名
self.label_dir = label_dir
# 数据地址就是根目录 + 标签目录(数据文件),也就是对应的cat文件夹或dog文件夹
self.path = os.path.join(self.root_dir, self.label_dir)
# 图片地址就是数据文件下的所有文件名 (返回一个列表)
self.img_path = os.listdir(self.path)
# 数据预处理
self.transform = transform
# 重写__getitem__()函数
def __getitem__(self, idx):
imag_name = self.img_path[idx]
img_item_path = os.path.join(self.path, imag_name)
img = Image.open(img_item_path)
# 如果传入transform 就对其进行预处理
if self.transform:
img = self.transform(img)
if self.label_dir == "train_cat" or self.label_dir == "test_cat":
label = 0
else:
label = 1
return img, label
# 重写 __len__()函数:获取数据集的数量
def __len__(self):
return len(self.img_path)
下面是训练模型的代码:
import torch
import torch.nn as nn
import torchvision
from torch.utils.tensorboard import SummaryWriter
from dataset import *
from model import *
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor
# 1. 准备数据集
# 数据预处理
transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
# 加载训练集
root_dir = "../dataset/dataset_kaggledogvscat/CatVSDog/"
train_cat_label_dir = "train_cat"
train_dog_label_dir = "train_dog"
train_cat_dataset = CatvsDogDataSet(root_dir, train_cat_label_dir, transform=transforms)
train_dog_dataset = CatvsDogDataSet(root_dir, train_dog_label_dir, transform=transforms)
train_dataset = train_cat_dataset + train_dog_dataset
# 加载测试集
root_dir = "../dataset/dataset_kaggledogvscat/CatVSDog/"
test_cat_label_dir = "test_cat"
test_dog_label_dir = "test_dog"
test_cat_dataset = CatvsDogDataSet(root_dir, test_cat_label_dir, transform=transforms)
test_dog_dataset = CatvsDogDataSet(root_dir, test_dog_label_dir, transform=transforms)
test_dataset = test_cat_dataset + test_dog_dataset
train_data_size = len(train_dataset)
test_data_size = len(test_dataset)
# print(train_data_size) # 1400
# print(test_data_size) # 600
# 2. 利用 DataLoader来加载数据集
train_dataloader = DataLoader(train_dataset, batch_size=100, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 4. 创建网络模型
model = AlexNet()
if torch.cuda.is_available():
model = model.cuda()
# 5. 创建损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda()
# 6. 创建优化器
learning_rate = 1e-3
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 7. 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 可选1 添加TensorBoard
writer = SummaryWriter("./logs_AlexNet")
for i in range(epoch):
print("-----------第{}轮训练开始-----------".format(i + 1))
# 8. 训练步骤开始
model.train()
for data in train_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = model(imgs)
# 计算loss值
loss = loss_fn(outputs, targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 5 == 0:
print("训练次数:{}, Loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 9. 测试步骤开始
model.eval()
total_test_loss = 0
total_accuracy = 0
# torch.no_grad() 是一个上下文管理器,用于禁用梯度计算 当进入with后的代码块时,Pytorch会停止跟踪梯度
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = model(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的accuracy:{}".format(total_accuracy / test_data_size))
total_test_step += 1
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
# 10. 保存每一轮训练的模型
torch.save(model.state_dict(), "train_model/AlexNet_{}.pth".format(i + 1))
writer.close()
训练完毕以后,在TensorBoard查看train_loss曲线:
查看test_accuracy曲线:
可能是我的数据量太小导致的,其准确率最高只有61%。
参考链接:
原文地址:https://blog.csdn.net/houjingchuan/article/details/135329465
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_52102.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!