本文介绍: 统计图像中相同像素点的数量。使用(images, channels, mask, histSize, ranges)函数:原图像图像格式为uint8或float32,当传入函数时应用[]括起来,例如[img]。:同样用中括号括起来,告诉我们统幅图像的直方图,如果图像是灰度图就是[0],如果是彩色图可以是[0],[1],[2],分别对应BGR。:掩膜图像,统幅图像使用None,若使用一部分需要自行制作。:BIN的数目,也要中括号。:像素值范围一般为[0,256]

直方图

统计图像中相同像素点的数量。
使用cv2.calcHist(images, channels, mask, histSize, ranges)函数

images:原图像图像格式为uint8或float32,当传入函数时应用[]括起来,例如[img]。
channels:同样用中括号括起来,告诉我们统幅图像的直方图,如果图像是灰度图就是[0],如果是彩色图可以是[0],[1],[2],分别对应BGR。
mask:掩膜图像,统幅图像使用None,若使用一部分需要自行制作。
histSize:BIN的数目,也要中括号。
ranges:像素值范围一般为[0,256]

灰度图

img = cv2.imread('deppb.jpg', 0)
show.cv_show('img', img)
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
h1 = hist.shape
plt.hist(img.ravel(), 256)
plt.show()

灰度图
在这里插入图片描述
直方图
在这里插入图片描述

彩色图

img2 = cv2.imread('deppb.jpg')
show.cv_show('img2', img2)
color = ('b', 'g', 'r')
for i, col in enumerate(color):
    histr = cv2.calcHist([img2], [i], None, [256], [0, 256])
    plt.plot(histr, color=col)
    plt.xlim([0, 256])
plt.show()

彩色图
在这里插入图片描述
直方图
在这里插入图片描述
图为三通道的直方图

mask操作

mask,在指定区域置为255,其余区域置为0,与原图相与,最后得到指定区域的像素点个数统计,绘制直方图。

# 创建mask
show.cv_show('img2', img2)  # 原图
mask = np.zeros(img2.shape[:2], np.uint8)
print(mask.shape)
mask[200: 600, 100: 427] = 255
show.cv_show('mask', mask)  # mask图

masked_img2 = cv2.bitwise_and(img2, img2, mask=mask)
show.cv_show('masked_img2', masked_img2)  # 原图与mask

hist_full = cv2.calcHist([img2], [0], None, [256], [0, 256])
hist_mask = cv2.calcHist([img2], [0], mask, [256], [0, 256])
plt.plot(hist_full), plt.plot(hist_mask)  # [0]通道直方图对比
plt.show()

mask图
在这里插入图片描述
mask与原图相与
在这里插入图片描述
[0]通道直方图对比
在这里插入图片描述
蓝色为整体直方图,橙色为特定区域直方图。

均衡化

将一副图像的直方图分布通过累积分布函数变成近似均匀分布,从而增强图像的对比度。
在这里插入图片描述
根据像素点个数得到概率值,再算出累积概率类似于分布函数,再由累积概率映射出新的像素值,最后取整。

img3 = cv2.imread('deppb.jpg', 0)
plt.hist(img3.ravel(), 256)  # 原图直方图
plt.show()

equ = cv2.equalizeHist(img3)
plt.hist(equ.ravel(), 256)  # 均衡化后直方图
plt.show()

res = np.hstack((img3, equ))
show.cv_show('res', res)    # 图像对比

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可以看到整体均衡化可能导致部分信息丢失。

自适应均衡化

其实是分区域进行均衡化,减少信息丢失。

clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))  # 方法
res_clahe = clahe.apply(img3)
plt.hist(res_clahe.ravel(), 256)  # 自适应均衡化后直方图
plt.show()
res = np.hstack((img3, equ, res_clahe))     # 与原图和整体均衡化对比
show.cv_show('res', res)

自适应均衡化的直方图
在这里插入图片描述

对比图
在这里插入图片描述
可以看到对比度加强而且信息丢失得到改善。

原文地址:https://blog.csdn.net/lsh2678227571/article/details/135297960

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_52172.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注