本文介绍: 双向链表由一系列的节点组成,每个节点包含两个指针,分别指向前一个节点和后一个节点。与单向链表不同,双向链表可以从任意节点开始,向前或向后遍历链表。如下图所示:这是一个无头双向链表,从中我们不难看出它与无头单向链表的区别:1.不仅有头节点通过next进行顺序访问,还有尾节点通过prev进行逆序访问2.额外有一个prev域访问上一个已访问过的节点LinkedList的官方文档。

目录

一,双向链表

1.单向链表的缺点

2.什么是双向链表?

3.自主实现双向链表

接口实现:

二,LinkedList

1.LinkedList的使用

1.1 什么是LinkedList?

1.2 LinkedList的使用

1.LinkedList的构造

2.LinkedList的其它常用方法介绍

3.LinkedList的遍历

三,ArrayList与LinkedList的区别


一,双向链表

1.单向链表的缺点

再了解单向链表的实现以及使用过后,我们发现单项链表存在存在缺点:

1.如下图,当cur访问下一个节点时无法再访问到上一个节点

2.尾插法的时间复杂度为O(N)

为应对该类问题,于是就有了双向链表

2.什么是双向链表?

定义:双向链表由一系列的节点组成,每个节点包含两个指针,分别指向前一个节点和后一个节点。与单向链表不同,双向链表可以从任意节点开始,向前或向后遍历链表。

如下图所示:

这是一个无头双向链表,从中我们不难看出它与无头单向链表的区别:

1.不仅有头节点通过next进行顺序访问,还有尾节点通过prev进行逆序访问

2.额外有一个prev域访问上一个已访问过的节点

3.自主实现双向链表

接口实现:

接口部分:

public interface IList {

    //头插法
    public void addFirst(int data);

    //尾插法
    public void addLast(int data);

    //任意位置插入,第一个数据节点为0号下标
    public void addIndex(int index, int data);

    //查找是否包含关键字key是否在单链表当中
    public boolean contains(int key);

    //删除第一次出现关键字为key的节点
    public void remove(int key);

    //删除所有值为key的节点
    public void removeAllKey(int key);

    //得到单链表的长度
    public int size();

    //打印单链表
    public void display();

    //清空单链表
    public void clear();

}

接口重写部分:

public class MyList implements IList{
    static class ListNode {
        public int val;//值
        public ListNode prev;//访问上一个域
        public ListNode next;//访问下一个域
        public ListNode(int val) {
            this.val = val;
        }
    }
    public ListNode head;//头节点
    public ListNode last;//尾节点

    //头插法
    @Override
    public void addFirst(int data) {
        ListNode node = new ListNode(data);
        if (this.head == null) {
            this.head = node;
            this.last = node;
        } else {
            node.next = this.head;
            this.head.prev = node;
            this.head = node;
        }
    }

    //尾插法
    @Override
    public void addLast(int data) {
        ListNode node = new ListNode(data);
        if (this.head == null) {
            this.head = node;
            this.last = node;
        } else {
            this.last.next = node;
            node.prev = this.last;
            this.last = node;
        }
    }

    //任意位置插入,第一个数据节点为0号下标
    @Override
    public void addIndex(int index, int data) {
        ListNode node = new ListNode(data);
        ListNode cur = this.head;
        if (index >= 0 && index <= size()) {
            if (index == 0) {
                addFirst(data);
                return;
            }
            if (index == size()) {
                addLast(data);
                return;
            }
            int count = 1;
            while (cur != null) {
                ListNode curNext = cur.next;
                if (count == index) {
                    node.next = curNext;
                    curNext.prev = node;
                    cur.next = node;
                    node.prev = cur;
                }
                count++;
                cur = cur.next;
            }
        } else {
            throw new IndexException("添加下标异常!");
        }
    }

    //查找是否包含关键字key是否在单链表当中
    @Override
    public boolean contains(int key) {
        ListNode cur = this.head;
        while (cur != null) {
            if (cur.val == key) {
                return true;
            }
            cur = cur.next;
        }
        return false;
    }

    //删除第一次出现关键字为key的节点
    @Override
    public void remove(int key) {
        ListNode cur = this.head;
        while (cur != null) {
            ListNode curNext = cur.next;
            if (cur.val == key) {
                //删头节点
                if (cur.prev == null) {
                    //this.head.val = null;
                    this.head = head.next;
                    head.prev = null;
                    return;
                }
                //删尾节点
                if (cur.next == null) {
                    //this.last.val == null;
                    this.last = last.prev;
                    last.next = null;
                    return;
                }
                curNext.prev = cur.prev;
                cur.prev.next = curNext;
                return;
            }
            cur = cur.next;
        }
    }

    @Override
    public void removeAllKey(int key) {
        ListNode cur = this.head;
        while (cur != null) {
            ListNode curNext = cur.next;
            if (cur.val == key) {
                //删头节点
                if (cur.prev == null) {
                    //this.head.val = null;
                    this.head = head.next;
                    head.prev = null;
                } else if (cur.next == null) {
                    //this.last.val == null;
                    this.last = last.prev;
                    last.next = null;
                } else {
                    curNext.prev = cur.prev;
                    cur.prev.next = curNext;
                }
            }
            cur = cur.next;
        }
    }

    //得到单链表的长度
    @Override
    public int size() {
        ListNode cur = this.head;
        int count = 0;
        while (cur != null) {
            count++;
            cur = cur.next;
        }
        return count;
    }

    //打印单链表
    @Override
    public void display() {
        ListNode cur = this.head;
        if (head == null) {
            System.out.println("[" + "]");
        } else {
            System.out.print("[");
            while (cur != null) {
                if (cur == last) {
                    System.out.print(cur.val);
                } else {
                    System.out.print(cur.val + " ");
                }
                cur = cur.next;
            }
            System.out.println("]");
        }
    }

    //清空单链表
    @Override
    public void clear() {
        ListNode cur = this.head;
        while (cur.next != null) {
            ListNode curNext = cur.next;
            //cur.val =null;
            cur.prev = null;
            cur.next = null;
        }
        this.head = null;
        this.last = null;
    }
}

二,LinkedList

LinkedList是一个双向链表,以上双向链表便是模拟LinkedList

1.LinkedList的使用

1.1 什么是LinkedList?

LinkedList的官方文档

LinkedList的底层是双向链表结构,由于链表没有将元素存储在连续的空间中,元素存储在单独的节点中,然后通过引用将节点连接起来了,因此在在任意位置插入或者删除元素时,不需要搬移元素,效率比较高。
在集合框架中,LinkedList也实现了List接口
【说明】
1. LinkedList实现了List接口
2. LinkedList的底层使用了双向链表
3. LinkedList没有实现RandomAccess接口,因此LinkedList不支持随机访问
4. LinkedList的任意位置插入和删除元素时效率比较高,时间复杂度为O(1)
5. LinkedList比较适合任意位置插入的场景

1.2 LinkedList的使用

1.LinkedList的构造
方法
解释
LikedList()
无参构造
public LinkedList(Collection<? extends E> c)
使用其他集合容器中元素构造
List

public static void main(String[] args) {

// 构造一个空的LinkedList

List<Integer> list1 = new LinkedList<>();

List<String> list2 = new java.util.ArrayList<>();

list2.add(“JavaSE”);

list2.add(“JavaWeb”);

list2.add(“JavaEE”);

// 使用ArrayList构造LinkedList

List<String> list3 = new LinkedList<>(list2);

}

2.LinkedList的其它常用方法介绍
方法
解释
boolean
add
(E e)
尾插
e
void
add
(int index, E element)

e
插入到
index
位置
boolean
addAll
(Collection<? extends E> c)
尾插
c
中的元素
E
remove
(int index)
删除
index
位置元素
boolean
remove
(Object o)
删除遇到的第一个
o
E
get
(int index)
获取下标
index
位置元素
E
set
(int index, E element)
将下标
index
位置元素设置为
element
void
clear
()
清空
boolean
contains
(Object o)
判断
o
是否在线性表中
int
indexOf
(Object o)
返回第一个
o
所在下标
int
lastIndexOf
(Object o)
返回最后一个
o
的下标
List<E>
subList
(int fromIndex, int toIndex)
截取部分
list

public static void main(String[] args) {

LinkedList<Integer> list = new LinkedList<>();

list.add(1); // add(elem): 表示尾插

list.add(2);

list.add(3);

list.add(4);

list.add(5);

list.add(6);

list.add(7);

System.out.println(list.size());

System.out.println(list);

// 在起始位置插入0

list.add(0, 0); // add(index, elem): index位置插入元素elem

System.out.println(list);

list.remove(); // remove(): 删除第一个元素,内部调用的是removeFirst()

list.removeFirst(); // removeFirst(): 删除第一个元素

list.removeLast(); // removeLast(): 删除最后元素

list.remove(1); // remove(index): 删除index位置的元素

System.out.println(list);

// contains(elem): 检测elem元素是否存在,如果存在返回true,否则返回false

if(!list.contains(1)){

list.add(0, 1);

}

list.add(1);

System.out.println(list);

System.out.println(list.indexOf(1)); // indexOf(elem): 从前往后找到第一个elem的位置

System.out.println(list.lastIndexOf(1)); // lastIndexOf(elem): 从后往前找第一个1的位置

int elem = list.get(0); // get(index): 获取指定位置元素

list.set(0, 100); // set(index, elem): index位置的元素设置为elem

System.out.println(list);

// subList(from, to): list[from, to)之间的元素构造一个新的LinkedList返回

List<Integer> copy = list.subList(0, 3);

System.out.println(list);

System.out.println(copy);

list.clear(); // list中元素清空

System.out.println(list.size());

}

3.LinkedList的遍历

public static void main(String[] args) {

LinkedList<Integer> list = new LinkedList<>();

list.add(1); // add(elem): 表示尾插

list.add(2);

list.add(3);

list.add(4);

list.add(5);

list.add(6);

list.add(7);

System.out.println(list.size());

// foreach遍历

for (int e:list) {

System.out.print(e + ” “);

}

System.out.println();

// 使用迭代器遍历正向遍历

ListIterator<Integer> it = list.listIterator();

while(it.hasNext()){

System.out.print(it.next()+ ” “);

}

System.out.println();

// 使用反向迭代器反向遍历

ListIterator<Integer> rit = list.listIterator(list.size());

while (rit.hasPrevious()){

System.out.print(rit.previous() +” “);

}

System.out.println();

}

三,ArrayList与LinkedList的区别

不同点
ArrayList
LinkedList
存储空间上
物理上一定连续
逻辑上连续,但物理上不一定连续
随机访问
支持
O(1)
不支持:
O(N)
头插
需要搬移元素,效率低
O(N)
只需修改引用的指向,时间复杂度为
O(1)
插入
空间不够时需要扩容
没有容量的概念
应用场景
元素高效存储
+
频繁访问
任意位置插入和删除频繁

完。

原文地址:https://blog.csdn.net/SixLegs/article/details/135487010

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_54094.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注