本文介绍: 大家好!今天为大家分享的是《PySpark大数据分析实战》第3章第4节的内容:数据可视化图表Seaborn介绍。
📋 博主简介
《PySpark大数据分析实战》-26.数据可视化图表Seaborn介绍
前言
大家好!今天为大家分享的是《PySpark大数据分析实战》第3章第4节的内容:数据可视化图表Seaborn介绍。
Python数据可视化工具介绍
数据可视化是一种提取有价值数据的有效方法,是数据分析和机器学习中非常重要的一环。它有助于提高分析效率,为机器学习模型提供可靠的数据基础。它可以帮助人们更直观地理解数据,更好地理解数据的趋势和变化,发现潜在的联系,从而帮助人们更好地构建机器学习模型,提高模型的准确性。此外,数据可视化可以帮助人们更好地发现数据中的噪声和异常。通过可视化,可以更容易地发现噪声数据和异常情况,从而减少机器学习模型的误差。常用的Python数据可视化工具包括Matplotlib、Seaborn、Pyecharts等。
Seaborn介绍
Seaborn是Python中一个基于Matplotlib的数据可视化库,对Matplotlib进行了二次封装,提供了一些高级接口,可以让人们轻松地绘制统计图形,以便更好地理解数据分布和趋势。Seaborn旨在以数据可视化为中心来挖掘与理解数据,它提供的面向数据集制图函数主要是对行列索引和数组的操作,包含对整个数据集进行内部的语义映射与统计整合,以此生成富于信息的图表。Seaborn被广泛应用于数据分析、数据挖掘、统计建模等领域,因为它在细节、可扩展性和文档性方面都表现的非常优秀。相比于Matplotlib,Seaborn可以帮助人们更快速地完成高级绘图,同时还有更加美观和规范的配色方案。
Seaborn内置了多个数据集,可以方便人们进行实验和练习,同时也方便在实际工作中快速加载数据进行可视化分析。Seaborn内置的一些数据集包括:
绘制折线图
绘制柱状图
绘制箱型图
结束语
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。