本文介绍: 当网络层数较深时,梯度可能在传播过程中逐渐消失(变得非常小)或爆炸(变得非常大),导致模型参数更新困难或不稳定。病态条件通常出现在需要求解逆矩阵或进行特征值分解的场合。当矩阵的条件数很大时(即矩阵的最大特征值和最小特征值之比很大),矩阵求逆或特征值分解会变得不稳定,导致数值计算问题。例如,在softmax函数中,当输入的数值很大时,指数运算的结果可能非常大,导致上溢。下溢:相反,当输入值过小,计算结果可能趋近于零,导致下溢。例如,在对数似然损失函数中,当预测概率接近零时,对数运算可能导致下溢。
上溢:指数函数或对数函数的输入值过大,导致计算结果超出了计算机可以表示的最大值。例如,在softmax函数中,当输入的数值很大时,指数运算的结果可能非常大,导致上溢。
下溢:相反,当输入值过小,计算结果可能趋近于零,导致下溢。例如,在对数似然损失函数中,当预测概率接近零时,对数运算可能导致下溢。
解决方法:
病态条件通常出现在需要求解逆矩阵或进行特征值分解的场合。当矩阵的条件数很大时(即矩阵的最大特征值和最小特征值之比很大),矩阵求逆或特征值分解会变得不稳定,导致数值计算问题。
解决方法:
在深度神经网络中,梯度消失和爆炸问题是由于反向传播过程中梯度的连乘效应引起的。当网络层数较深时,梯度可能在传播过程中逐渐消失(变得非常小)或爆炸(变得非常大),导致模型参数更新困难或不稳定。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。