本文介绍: 危险品的运输涉及从离开仓库到由车辆运输到目的地的风险。监控事故、车辆运动动态以及车辆通过特定区域的频率对于监督车辆运输危险品的过程至关重要。危险品是指具有爆炸性、易燃性、中毒杀人、烧成放射性等特性,在运输、装卸与存放的保管过程中,容易造成人身伤害,需要特别保护的物品造成财产损失。随着社会经济的发展,危险品的生产和使用量呈逐年上升趋势,而中国是世界上仅次于美国的危险品生产第二大国,这恰恰使得危险品的监督管理需要人们高度重视。
危险品的运输涉及从离开仓库到由车辆运输到目的地的风险。监控事故、车辆运动动态以及车辆通过特定区域的频率对于监督车辆运输危险品的过程至关重要。
危险品是指具有爆炸性、易燃性、中毒杀人、烧成放射性等特性,在运输、装卸与存放的保管过程中,容易造成人身伤害,需要特别保护的物品造成财产损失。随着社会经济的发展,危险品的生产和使用量呈逐年上升趋势,而中国是世界上仅次于美国的危险品生产第二大国,这恰恰使得危险品的监督管理需要人们高度重视。2009年20月,秘鲁天然气运输卡车和一辆长途汽车撞到后面,造成10人死亡,5000人受伤。同年,美国运送有毒化学品的卡车氢萤石倾覆,并造成2005名居民紧急疏散。30年400月,国产京沪高速一代液氨运输车被揭露,造成近多人死亡,多人中毒,l居民万人以上被疏散,大量家畜和农作物死亡。造成的危害是巨大的,因此,危险品在公路运输过程中显然处于危险之中,因此,加强危险品运输过程的管理是极其紧迫的,势在必行的。
危险品车辆的GPS定位是动态车辆运动监控的主要基础。摄像机识别的车辆的次数和连续检测时间可用于确定危险货物车辆通过特定地点的具体频率和事故情况。危险品车辆识别的准确性受到环境特征(如照明、凌乱的背景和部分遮挡)的显着影响。
基于图像和深度学习的危险品车辆识别技术
基于图像的检测方法主要通过车辆图像特征和方向梯度直方图特征来识别车辆目标。基于车辆图像纹理和边缘特征的车辆检测系统的根本缺点是照明和车辆完整性会显着影响它们。然而,随着深度学习的不断进步,越来越多的研究人员正在研究使用深度学习进行车辆检测的主题。
1. 场景准备
2. 生成数据集
3、YOLOv5模型训练
4、训练模型验证
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。