本文介绍: 要构建Optimizer,您必须给它一个包含要优化的参数(所有参数都应该是变量s)的迭代表。然后,您可以指定优化器特定的选项,如学习率、权重衰减等。增加模型结构为了适应新的数据集CIFAR10,将原本输出类别1000,通过线性输出的类别为10。jupyter notebook终于能运行pytorch环境了呜呜呜。创建一个pytorch环境n后面环境名字,python环境版本。修改模型结构为了适应新的数据集CIFAR10,输出的类别为10。保留数据的特征的同时,需要减少数据总量。

一、pytorch环境创建

创建一个pytorch环境n后面环境名字,python环境版本

conda create -n pytorch python=3.11

激活环境

conda activate pytorch

查看工具包

pip list

安装pytorch,我天是真的慢

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

在这里插入图片描述
在这里插入图片描述
验证是否安装成功,是否可以使用gpu

(pytorch) E:deep_learning>python
import torch
torch.cuda.is_available()
True

二、jupyter配置

安装jupyter

(pytorch) E:deep_learning>conda install nb_conda

换成了,可以了

conda install -n pytorch ipykernel

jupyter notebook终于能运行pytorch环境了呜呜呜。。。
在这里插入图片描述

遇到了问题:
转载:23年最新版pycharm找不到conda可执行文件解决办法

终于成了,好难
在这里插入图片描述

dir():打开,看见
help():说明书
dir(toch)

在这里插入图片描述

dir(torch.cuda)
dir(torch.cuda.is_available())
help(torch.cuda.is_available)
Help on function is_available in module torch.cuda:
is_available() -> bool
    Returns a bool indicating if CUDA is currently available.

在这里插入图片描述

pytorch加载数据

在这里插入图片描述

三、实战

1、Dataset代码实战

import os.path

from torch.utils.data import Dataset
from PIL import Image
class MyData(Dataset):
    # 路径设置
    def __init__(self,root_dir,label_dir):
        # 给这个类赋值的变量,可以成为这个类中的全局变量
        self.root_dir=root_dir
        self.label_dir=label_dir
        # 图片路径地址--路径拼接
        self.path=os.path.join(self.root_dir,self.label_dir)
        # 图片所有列表
        self.image_path=os.listdir(self.path)

    # 返回图片路径
    def __getitem__(self, idx):
        # 读取对应一张图片
        img_name=self.image_path[idx]
        # 图片的相对路径
        img_item_path=os.path.join(self.root_dir,self.label_dir,img_name)
        # 打开该路径的图片
        img=Image.open(img_item_path)
        label=self.label_dir
        return img,label
    # 数据长度
    def __len__(self):
        return len(self.image_path)

root_dir="dataset/train"
ants_label_dir="ants_image"
bees_label_dir="bees_image"
ants_dataset=MyData(root_dir,ants_label_dir)
bees_dataset=MyData(root_dir,bees_label_dir)

# 拼接成总集合
train_dataset=ants_dataset+bees_dataset

2、Tensorboard的使用

pytorch环境安装tensorboard

(pytorch) C:UsersDell>pip install tensorboard

打开logs,logdir=事件文件所在文件夹名

(pytorch) E:deep_pytorch>tensorboard --logdir=pytorch/transform/logs

更改端口

(pytorch) E:deep_pytorch>tensorboard --logdir=logs --port=6008

在这里插入图片描述

http://localhost:6006/
在这里插入图片描述

from  torch.utils.tensorboard import  SummaryWriter

writer=SummaryWriter("logs")

# writer.add_image()
# y=x
for i in range(100):
    writer.add_scalar("y=x",i,i)
"""
tag(str):数据标识符
scalar_value(float或string/blobname):要保存的值x
global_step(int):要记录的全局步长值y
"""
writer.close()

3、tensorboard

from  torch.utils.tensorboard import  SummaryWriter
import numpy as np
from PIL import Image
writer=SummaryWriter("logs")

img_path="E:deep_pytorchdataset\train\ants_image\0013035.jpg"
img_PIL=Image.open(img_path)

img_array=np.array(img_PIL)
writer.add_image("test",img_array,1,dataformats='HWC')
"""
tag(str):数据标识符
img_tensor(torch.tensor、numpy.ndarray或string/blobname):图像数据
global_step(int):要记录的全局步长值
"""
# y=x
for i in range(100):
    writer.add_scalar("y=3x",3*i,i)
"""
tag(str):数据标识符
scalar_value(float或string/blobname):要保存的值x
global_step(int):要记录的全局步长值y
"""
writer.close()

在这里插入图片描述

4、图像变换,transform的使用

在这里插入图片描述

from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from PIL import Image
import cv2
# python的用法-》tensor数据类型
# 通过transforms.ToTensor去解决两个问题

img_path="E:deep_pytorchdataset\train\bees_image90179376_abc234e5f4.jpg"
img=Image.open(img_path)

writer=SummaryWriter("logs")

# 1、transforms该如何使用
tensor_trans=transforms.ToTensor()
# img图片转为tensor数据类型
tensor_img=tensor_trans(img)

# 2、为什么需要Tensor数据类型
writer.add_image("Tensor_img2",tensor_img)
writer.close()

在这里插入图片描述

5、常见的transforms

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

writer=SummaryWriter("logs")

img=Image.open("E:deep_pytorchdataset\train\ants_image\0013035.jpg")
# totensor的使用
trans_totensor=transforms.ToTensor()
img_totensor=trans_totensor(img)

writer.add_image("to_tensor",img_totensor)

# Normalize归一化
print(img_totensor[0][0][0])
trans_norm=transforms.Normalize([1,3,5],[1,3,5])
img_norm=trans_norm(img_totensor)
print(img_norm[0][0][0])
writer.add_image("img_normalize",img_norm,2)
writer.close()

在这里插入图片描述

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

writer=SummaryWriter("logs")

img=Image.open("E:deep_pytorchdataset\train\ants_image\0013035.jpg")
# totensor的使用
trans_totensor=transforms.ToTensor()
img_totensor=trans_totensor(img)

writer.add_image("to_tensor",img_totensor)

# Normalize归一化
print(img_totensor[0][0][0])
trans_norm=transforms.Normalize([1,3,5],[1,3,5])
img_norm=trans_norm(img_totensor)
print(img_norm[0][0][0])
writer.add_image("img_normalize",img_norm)

# Resize缩放
print(img.size)
trans_resize=transforms.Resize((512,512))
#img PIL-->resize-->img_resize PIL
img_resize=trans_resize(img)
#img_resize PIL -->trans_totensor --> totesnor
img_resize=trans_totensor(img_resize)
writer.add_image("resize",img_resize)


writer.close()

在这里插入图片描述

# Compose
trans_resize_2=transforms.Resize(256)
trans_compose=transforms.Compose([trans_resize_2,trans_totensor])
img_resize_2=trans_compose(img)
writer.add_image("Compose",img_resize_2,1)

6、torchvision中的数据集使用

https://pytorch.org/vision/0.9/datasets.html#cifar

在这里插入图片描述

import torchvision
from torch.utils.tensorboard import SummaryWriter

# 将PIL数据类型转换为tensor数据类型
dataset_transform=torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
])
# transform=dataset_transform将数据集里的每一张图片转换为tensor类型
train_set=torchvision.datasets.CIFAR10(root="./dataset",train=True,transform=dataset_transform,download=True)
test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=dataset_transform,download=True)

# # 第一张测试图片
# print(test_set[0])
# # 测试集的类别
# print(test_set.classes)
# # 图片信息img,target
# img,target=test_set[0]
# print(img)
# print(target)
# # 显示图片
# img.show()
writer=SummaryWriter("p1")
# 输出训练集前十张图片
for i in range(10):
    img,target=test_set[i]
    writer.add_image("test_set",img,i)
# 关闭读写
writer.close()

在这里插入图片描述

7、dataloader的使用

import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 准备的测试数据集
test_data=torchvision.datasets.CIFAR10("../torch/dataset",train=False,transform=torchvision.transforms.ToTensor())
# batch_size每页64张图片进行一次叠加,shuffle=True每次打乱叠加的数据,drop_last=true把最后不足64张的舍去
test_loader=DataLoader(dataset=test_data,batch_size=64,shuffle=True,num_workers=0,drop_last=True)

# 测试数据集中第一张图片及target
img,target=test_data[0]
print(img.shape)
print(target)

writer=SummaryWriter("dataloader")
step=0
for data in test_loader:
    imgs,targets=data
    # print(imgs.shape)
    # print(targets)
    writer.add_images("test_data_four",imgs,step)
    step=step+1
writer.close()

在这里插入图片描述

四、神经网络

1、神经网络基本骨架–nn.Module的使用

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

在这里插入图片描述

import torch
from torch import nn


class liu(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        output = input+1
        return  output
l=liu()
x=torch.tensor(1.0)
output=l(x)
print(output)


在这里插入图片描述

2、卷积操作

在这里插入图片描述

在这里插入图片描述

import torch
import torch.nn.functional as F
# 输入图像
input=torch.tensor([[1,2,0,3,1],
                    [0,1,2,3,1],
                    [1,2,1,0,0],
                    [5,2,3,1,1],
                    [2,1,0,1,1]])

# 卷积核
kernel=torch.tensor([[1,2,1],
                     [0,1,0],
                     [2,1,0]])
# 输入要求 input tensor of shape (minibatch, in_channels, iW)
# 原本torch.Size([5, 5])  torch.Size([3, 3])
# 进行格式转变
# 1 batch size=1,channel=1,5*5
input=torch.reshape(input,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))

print(input.shape)
print(kernel.shape)

output=F.conv2d(input,kernel,stride=1)
print(output)
# padding 周围填充,为了保存有效权重值
output2=F.conv2d(input,kernel,stride=1,padding=1)
print(output2)

在这里插入图片描述

3、卷积层的使用(Convolutional Layer)

CONV2D

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

在这里插入图片描述
在这里插入图片描述

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 路径,测试数据集,数据类型变换,
dataset=torchvision.datasets.CIFAR10("../../dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)

dataloader=DataLoader(dataset,batch_size=64)

class liu(nn.Module):
    def __init__(self):
        super(liu,self).__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)

    def forward(self,x):
        x=self.conv1(x)
        return x
l=liu()
print(l)
writer=SummaryWriter("../logs")
step=0
for data in dataloader:
    imgs,target=data
    output=l(imgs)
    print(f"older{imgs.shape}")
    print(f"new{output.shape}")
    # oldertorch.Size([64, 3, 32, 32])
    writer.add_images("input",imgs,step)
    # newtorch.Size([64, 6, 30, 30])
    # 需要3个channel--》[xxx,3,30,30]
    output=torch.reshape(output,(-1,3,30,30))
    writer.add_images("output",output,step)

    step=step+1
writer.close()

在这里插入图片描述

4、最大池化的使用(MaxPooling)

保留数据的特征的同时,需要减少数据总量

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

在这里插入图片描述
在这里插入图片描述

import torch
import torchvision.datasets
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10("../../dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)

dataloader=DataLoader(dataset,batch_size=64)
"""
# 输入图像
input=torch.tensor([[1,2,0,3,1],
                    [0,1,2,3,1],
                    [1,2,1,0,0],
                    [5,2,3,1,1],
                    [2,1,0,1,1]],dtype=torch.float32)

# 类型转换
input=torch.reshape(input,(-1,1,5,5))
print(input)
"""

class liu(nn.Module):
    def __init__(self):
        super(liu,self).__init__()
        # ceil_mode=False,向下取整
        self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)

    def forward(self,input):
        output=self.maxpool1(input)
        return output

l=liu()
writer=SummaryWriter("../logs_writer")
step=0
for data in dataloader:
    imgs,target=data
    output=l(imgs)
    writer.add_images("input250",imgs,step)
    writer.add_images("output250",output,step)
    step=step+1
writer.close()

在这里插入图片描述
在这里插入图片描述

5、非线性激活(Nonlinear activation)

RELU
在这里插入图片描述
SIGMOID

import torch
from torch import nn
from torch.nn import ReLU

input=torch.tensor([[1,-0.5],
                    [-1,3]])

input=torch.reshape(input,(-1,1,2,2))
print(input)

class liu(nn.Module):
    def __init__(self):
        super(liu,self).__init__()
        self.relu1=ReLU()

    def forward(self,input):
        output=self.relu1(input)
        return output

l=liu()
output=l(input)
print(output)

在这里插入图片描述

import torch
import torchvision.datasets
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 测试数据集
dataset=torchvision.datasets.CIFAR10("../../dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 64一组
dataloader=DataLoader(dataset,batch_size=64)
"""
# 输入数据集
input=torch.tensor([[1,-0.5],
                    [-1,3]])

input=torch.reshape(input,(-1,1,2,2))
print(input)
"""
# 激活函数relu
class liu(nn.Module):
    def __init__(self):
        super(liu,self).__init__()
        self.relu1=ReLU()
        self.sigmoid1=Sigmoid()

    def forward(self,input):
        output=self.sigmoid1(input)
        return output

l=liu()
"""
output=l(input)
print(output)
"""
# 创建一个tensorboard文件
writer=SummaryWriter("logs_relu")
step=0
# 将测试集进行激活
for data in dataloader:
    imgs,target=data
    output=l(imgs)
    writer.add_images("one",imgs,step)
    writer.add_images("two",output,step)

    step=step+1

writer.close()



在这里插入图片描述

6、线性层(linear)

在这里插入图片描述
在这里插入图片描述

import torch
import torchvision
from PIL.GimpGradientFile import linear
from torch import nn
from torch.utils.data import DataLoader

test_data=torchvision.datasets.CIFAR10("../torch/dataset",train=False,transform=torchvision.transforms.ToTensor())

test_loader=DataLoader(dataset=test_data,batch_size=64)

class liu(nn.Module):
    def __init__(self):
        super(liu,self).__init__()
        self.linear1=linear(196608,10)

    def forward(self,input):
        output=self.linear1(input)
        return output


for data in test_loader:
    imgs,targets=data
    # 展平
    output=torch.flatten(imgs)
    print(imgs.shape)
    print(output.shape)



7、序列化(Sequential)

model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )

# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([
          ('conv1', nn.Conv2d(1,20,5)),
          ('relu1', nn.ReLU()),
          ('conv2', nn.Conv2d(20,64,5)),
          ('relu2', nn.ReLU())
        ]))

在这里插入图片描述
在这里插入图片描述

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter


class liu(nn.Module):
    def __init__(self):
        """
        self.conv1=Conv2d(3,32,5,padding=2)
        self.maxpool1=MaxPool2d(2)
        self.conv2=Conv2d(32,32,5,padding=2)
        self.maxpool2=MaxPool2d(2)
        self.conv3=Conv2d(32,64,5,padding=2)
        self.maxpool3=MaxPool2d(2)

        self.flatten=Flatten()
        self.linear1=Linear(1024,64)
        self.linear2=Linear(64,10)
        """
        super(liu,self).__init__()
        self.mdoel1=Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        """
        x=self.conv1(x)
        x=self.maxpool1(x)
        x=self.conv2(x)
        x=self.maxpool2(x)
        x=self.conv3(x)
        x=self.maxpool3(x)

        x=self.flatten(x)
        x=self.linear1(x)
        x=self.linear2(x)
        :param x:
        :return:
        """
        x=self.mdoel1(x)
        return x
l=liu()
# 图片格式
input=torch.ones((64,3,32,32))
output=l(input)
print(output.shape)

writer=SummaryWriter("logs")
# add_graph???
writer.add_graph(l,input)
writer.close()

在这里插入图片描述
在这里插入图片描述

8、损失函数与反向传播(loss function)

在这里插入图片描述

from torch.nn import L1Loss, MSELoss

import torch

inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(1,1,1,3))

targets=torch.reshape(targets,(1,1,1,3))

loss=L1Loss()
result=loss(inputs,targets)

loss_mse=MSELoss()
result_mse=loss_mse(inputs,targets)

print(result)
print(result_mse)

在这里插入图片描述
在这里插入图片描述

from torch import nn
from torch.nn import L1Loss, MSELoss

import torch

inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(1,1,1,3))

targets=torch.reshape(targets,(1,1,1,3))

loss=L1Loss()
result=loss(inputs,targets)

loss_mse=MSELoss()
result_mse=loss_mse(inputs,targets)

print(result)
print(result_mse)

# output
x=torch.tensor([0.1,0.2,0.3])
# 命中
y=torch.tensor([1])
# 1batsize,3类
x=torch.reshape(x,(1,3))
# 交叉商
loss_cross=nn.CrossEntropyLoss()
result_coss=loss_cross(x,y)
print(result_coss)

在这里插入图片描述

9、优化器(optimizer)

要构建Optimizer,您必须给它一个包含要优化的参数(所有参数都应该是变量s)的迭代表。然后,您可以指定优化器特定的选项,如学习率、权重衰减等。

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr=0.0001)

这是大多数优化器支持的简化版本。一旦使用例如backward()计算梯度,就可以调用该函数。

for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader

# 测试数据集
dataset=torchvision.datasets.CIFAR10("../../dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 64一组
dataloader=DataLoader(dataset,batch_size=64)


class liu(nn.Module):
    def __init__(self):
        super(liu,self).__init__()
        self.mdoel1=Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x=self.mdoel1(x)
        return x
l=liu()
# 损失函数
loss=nn.CrossEntropyLoss()
# 优化器--param模型参数,lr学习速率
optim=torch.optim.SGD(l.parameters(),lr=0.01)
for epoch in range(20):
    # 误差和
    running_loss=0.0
    for data in dataloader:
        imgs,targets=data
        outputs=l(imgs)
        result_loss=loss(outputs,targets)
        # 每一个网络模型梯度为0
        optim.zero_grad()
        # 调用损失函数反向传播求出每个节点的梯度
        result_loss.backward()
        # 对每个模型参数进行调优
        optim.step()
        running_loss=running_loss+result_loss
    print(running_loss)

在这里插入图片描述

五、模型的使用

1、现有模型的使用及更改

vgg
在这里插入图片描述
imagenet
在这里插入图片描述
在这里插入图片描述

import torchvision.datasets
from torch import nn

# train_data=torchvision.datasets.ImageNet("../../dataset",split='train',
#                                          transform=torchvision.transforms.ToTensor(),download=True)
# 加载网络模型
vgg16_false=torchvision.models.vgg16(pretrained=False)
# 下载网络模型
vgg16_true=torchvision.models.vgg16(pretrained=True)

print(vgg16_true)

train_data=torchvision.datasets.CIFAR10("../../dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)

# 增加现有模型结构
vgg16_true.classifier.add_module("add_linear",nn.Linear(1000,10))
print(vgg16_true)

# 修改现有模型结构
vgg16_false.classifier[6]=nn.Linear(4096,10)
print(vgg16_false)

增加模型结构为了适应新的数据集CIFAR10,将原本输出类别1000,通过线性输出的类别为10
在这里插入图片描述
修改模型结构为了适应新的数据集CIFAR10,输出的类别为10
在这里插入图片描述

2、网络模型的保存与加载

import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear

vgg16=torchvision.models.vgg16(pretrained=False)

# 保存方式1(模型结构+模型参数)
torch.save(vgg16,"vgg16_method1.pth")

# 保存方式2(模型参数)字典数据
torch.save(vgg16.state_dict(),"vgg16_method2.pth")

# 圈套模型
class liu(nn.Module):
    def __init__(self):
        super(liu,self).__init__()
        self.mdoel1=Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x=self.mdoel1(x)
        return x

l=liu()
torch.save(l,"l.pth")

在这里插入图片描述


import torch
import torchvision.models
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear

# 加载模型方式1
model1=torch.load("vgg16_method1.pth")
print(model1)

# 加载模型方式2,将字典数据重新转换为模型
vgg16=torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(torch.load("vgg16_method2.pth"))
# model2=torch.load("vgg16_method2.pth")
print(vgg16)

# 加载圈套
class liu(nn.Module):
    def __init__(self):
        super(liu,self).__init__()
        self.mdoel1=Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x=self.mdoel1(x)
        return x
model3=torch.load("l.pth")
print(model3)

model2保存的字典形式需要重新转换为模型参数形式
在这里插入图片描述

3、完整的模型训练套路(以CIFAR10数据集)

model.py

from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
import torch
# 搭建神经网络
class liu(nn.Module):
    def __init__(self):
        super(liu,self).__init__()
        self.mdoel1=Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x=self.mdoel1(x)
        return x

if __name__ == '__main__':
    # 测试网络正确性
    l=liu()
    # 64张图片3通道32*32大小
    input=torch.ones((64,3,32,32))
    output=l(input)
    print(output.shape)

tain.py

import nn
import torchvision.datasets
from torch.utils.data import DataLoader
from model import *
# 准备数据集
train_data=torchvision.datasets.CIFAR10("../dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
# 测试数据集
test_data=torchvision.datasets.CIFAR10("../dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)

# len长度
train_data_len=len(train_data)
test_data_len=len(test_data)
print("训练数据集长度:{}".format(train_data_len))
print("测试数据集长度:{}".format(test_data_len))

# 利用dataloader加载数据集
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)

# 创建网络模型
l=liu()

# 损失函数
loss_fn=nn.CrossEntropyLoss()

# 优化器--lr学习速率---1e-2=1 * (10)^-2 =1/100=0.01
optimizer=torch.optim.SGD(l.parameters(),lr=1e-2)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step=0
# 记录测试的次数
total_test_step=0
# 训练的轮数
epoch=10

for i in range(epoch):
    print("-----第{}轮训练开始-----".format(i+1))
    # 训练步骤开始
    for data in train_dataloader:
        imgs,targets=data
        outputs=l(imgs)
        # 期望-输出和
        loss=loss_fn(outputs,targets)
        # 梯度清零
        optimizer.zero_grad()
        # 反向传播
        loss.backward()
        # 优化参数
        optimizer.step()
        # 优化次数
        total_train_step=total_train_step+1
        print("训练次数:{},Loss{}".format(total_train_step,loss.item()))

在这里插入图片描述

4、训练模型套路二

import nn
from torch.utils.tensorboard import SummaryWriter

import torch
import torchvision.datasets
from torch.utils.data import DataLoader
from model import *
# 准备数据集
train_data=torchvision.datasets.CIFAR10("../dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
# 测试数据集
test_data=torchvision.datasets.CIFAR10("../dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)

# len长度
train_data_len=len(train_data)
test_data_len=len(test_data)
print("训练数据集长度:{}".format(test_data_len))
print("测试数据集长度:{}".format(train_data_len))

# 利用dataloader加载数据集
train_dataloader=DataLoader(test_data,batch_size=64)
test_dataloader=DataLoader(train_data,batch_size=64)

# 创建网络模型
l=liu()

# 损失函数
loss_fn=nn.CrossEntropyLoss()

# 优化器--lr学习速率---1e-2=1 * (10)^-2 =1/100=0.01
optimizer=torch.optim.SGD(l.parameters(),lr=1e-2)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step=0
# 记录测试的次数
total_test_step=0
# 训练的轮数
epoch=10
# 添加tensorboard
writer=SummaryWriter("logs_train")

for i in range(epoch):
    print("-----第{}轮训练开始-----".format(i+1))
    # 训练步骤开始
    for data in train_dataloader:
        imgs,targets=data
        outputs=l(imgs)
        # 期望-输出和
        loss=loss_fn(outputs,targets)
        # 梯度清零
        optimizer.zero_grad()
        # 反向传播
        loss.backward()
        # 优化参数
        optimizer.step()
        # 优化次数
        total_train_step=total_train_step+1
        if total_train_step%100==0:
            print("训练次数:{},Loss--{}".format(total_train_step,loss.item()))
            writer.add_scalar("train_loss",loss.item(),total_train_step)

    # 测试步骤开始
    total_test_loss=0
    # 测试的正确率
    total_accuracy=0
    with torch.no_grad():
        for data in test_dataloader:
            imgs,targets=data
            outputs=l(imgs)
            loss=loss_fn(outputs,targets)
            total_test_loss=total_test_loss+loss.item()
            # 预测正确的个数
            accuracy=(outputs.argmax(1) == targets).sum()
            total_accuracy=total_accuracy+accuracy

    print("整体测试集的loss{}".format(total_test_loss))
    print("整体测试集上的正确率{}".format(total_accuracy/test_data_len))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("accuracy",total_accuracy/test_data_len,total_test_step)
    total_test_step=total_test_step+1

    # 保存模型
    torch.save(l,"l_model{}.pth".format(i))
    print("模型已经保存")

writer.close()

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5、GPU训练

在这里插入图片描述

from torch import nn
from keras import Sequential
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.tensorboard import SummaryWriter
import torch
import torchvision.datasets
from torch.utils.data import DataLoader
import time
# 准备数据集
train_data=torchvision.datasets.CIFAR10("../dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
# 测试数据集
test_data=torchvision.datasets.CIFAR10("../dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)

# len长度
train_data_len=len(train_data)
test_data_len=len(test_data)
print("训练数据集长度:{}".format(train_data_len))
print("测试数据集长度:{}".format(test_data_len))

# 利用dataloader加载数据集
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)

# 创建网络模型
class liu(nn.Module):
    def __init__(self):
        super(liu,self).__init__()
        self.mdoel1=nn.Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x=self.mdoel1(x)
        return x
l=liu()
# 使用gpu训练
if torch.cuda.is_available():
    l=l.cuda()
# 损失函数
loss_fn=nn.CrossEntropyLoss()
# gpu
if torch.cuda.is_available():
    loss_fn=loss_fn.cuda()
# 优化器--lr学习速率---1e-2=1 * (10)^-2 =1/100=0.01
optimizer=torch.optim.SGD(l.parameters(),lr=1e-2)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step=0
# 记录测试的次数
total_test_step=0
# 训练的轮数
epoch=10
# 添加tensorboard
writer=SummaryWriter("logs_train")

# 开始时间
start_time=time.time()
for i in range(epoch):
    print("-----第{}轮训练开始-----".format(i+1))
    # 训练步骤开始
    for data in train_dataloader:
        imgs,targets=data
        # gpu
        if torch.cuda.is_available():
            imgs=imgs.cuda()
            targets=targets.cuda()
        outputs=l(imgs)
        # 期望-输出和
        loss=loss_fn(outputs,targets)
        # 梯度清零
        optimizer.zero_grad()
        # 反向传播
        loss.backward()
        # 优化参数
        optimizer.step()
        # 优化次数
        total_train_step=total_train_step+1
        if total_train_step%100==0:
            end_time=time.time()
            print(end_time-start_time)
            print("训练次数:{},Loss--{}".format(total_train_step,loss.item()))
            writer.add_scalar("train_loss",loss.item(),total_train_step)

    # 测试步骤开始
    total_test_loss=0
    # 测试的正确率
    total_accuracy=0
    with torch.no_grad():
        for data in test_dataloader:
            imgs,targets=data
            # gpu
            if torch.cuda.is_available():
                imgs = imgs.cuda()
                targets = targets.cuda()
            outputs=l(imgs)
            loss=loss_fn(outputs,targets)
            total_test_loss=total_test_loss+loss.item()
            # 预测正确的个数
            accuracy=(outputs.argmax(1) == targets).sum()
            total_accuracy=total_accuracy+accuracy

    print("整体测试集的loss{}".format(total_test_loss))
    print("整体测试集上的正确率{}".format(total_accuracy/test_data_len))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("accuracy",total_accuracy/test_data_len,total_test_step)
    total_test_step=total_test_step+1

    # 保存模型
    torch.save(l,"l_model{}.pth".format(i))
    print("模型已经保存")

writer.close()

在这里插入图片描述
可以定义训练的设备,用到时直接用即可

# 定义训练的设备
device =torch.device("cuda" if torch.cuda.is_available() else "cpu")
l=liu()
# 使用gpu训练
l=l.to(device)
# 损失函数
loss_fn=nn.CrossEntropyLoss()
# gpu
loss_fn=loss_fn.to(device)

6、完整模型验证

import torch
import torchvision.transforms
from PIL import Image
from keras import Sequential
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear

# 图片路径
image_path="../imgs/img.png"
# 读取图片
image=Image.open(image_path)
print(image)
# 因为网络模型结构是输入32×32原图片是800×500,所以需要转换
transform=torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                          torchvision.transforms.ToTensor()])
# 图片大小转换
image=transform(image)
print(image.shape)
# 网络模型
class liu(nn.Module):
    def __init__(self):
        super(liu,self).__init__()
        self.mdoel1=Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x=self.mdoel1(x)
        return x
# 加载网络模型
# 模型对应到cpu上
model=torch.load("../GPU/l_model9.pth",map_location=torch.device('cpu'))
print(model)
# img 测试模型
# 将三维图片转换为四维
image=torch.reshape(image,(1,3,32,32))
# 把模型转换为测试类型
model.eval()
with torch.no_grad():
    output=model(image)
print(output)
# 预测最大类别
print(output.argmax(1))

在这里插入图片描述

原文地址:https://blog.csdn.net/qq_52108058/article/details/134981918

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_57676.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注