一、说明
本报告全面探讨了应用于医学图像的图像处理和分类技术。开展了四项不同的任务来展示这些方法的多功能性和有效性。任务 1 涉及读取、写入和显示 PNG、JPG 和 DICOM 图像。任务 2 涉及基于定向变化的多类图像分类。此外,我们在任务 3 中包括了胸部 X 光图像的性别分类(男性/女性的 2 类分类),并在任务 4 中通过回归分析从 X 射线图像中估计了年龄。任务 5 侧重于胸部 X 射线图像中的肺区域分割,任务 6 将隔离扩展到四个不同的区域,任务 7 深入研究医学图像中的物体定位。总之,这些任务提供了机器学习在医学图像分析中的各种应用的整体视图。总之,这些任务提供了机器学习在医学图像分析中的各种应用的整体视图。这是我在医学影像方面的学术任务的一部分。
内容提要:
二、介绍
由于机器学习技术的集成,医学图像处理和分类取得了重大进展。在这项研究中,我们深入研究了一系列任务,旨在突出图像处理和分类的综合管道。任务范围从简单的图像加载、写入和显示到更复杂的分类场景。此外,我们还扩大了我们的研究范围,在任务 3 中包括胸部 X 射线图像的性别分类(男性/女性的 2 类分类),并在任务 4 中通过回归分析从 X 射线图像进行年龄估计。这些补充扩大了我们的研究范围,并强调了卷积神经网络(CNN)模型在医学图像分析领域的广泛应用。任务 5 侧重于胸部 X 射线图像中的肺区域分割,利用基于颜色的分割技术提取感兴趣的解剖区域。任务 6 将隔离扩展到医学图像中的四个不同区域,包括肺区、心脏区、肺外区和体外。任务 7 使用基于 YOLO 的对象检测深入研究医学图像中的对象定位。这项任务突出了关键结构精确定位的潜力,使疾病检测和治疗计划等应用成为可能。
三、任务1:医学图像的加载、写入和显示
四、任务2:基于方向方向的多类图像分类
任务 2 通过将胸部 X 射线图像分类为多个方向(上、下、左和右)来介绍图像分类的概念。该任务涉及数据加载、预处理、构建 CNN 模型、根据数据对其进行训练以及评估其性能。这项任务强调了多类分类任务的复杂性和卷积神经网络的必要性。