本文介绍: Transformer的设计不仅是自然语言处理领域的一个重大突破,也为机器学习和人工智能的未来发展提供了新的视角。其强大的性能和广泛的应用潜力使其成为当前和未来技术进步的关键因素之一。
QKT)V
(2)多头注意力
Transformer采用多头注意力机制,将注意力分散到不同的表示子空间,允许模型同时从多个角度理解信息。这种机制通过以下方式实现:
MultiHead(Q, K, V)
=
Concat
(
(3)位置编码
2.Transformer的内部机制
(1)编码器和解码器层
(2)前馈神经网络
(3)残差连接和层归一化
3.Transformer的特点和优势
4.结语
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。