本文介绍: 给你三个 正整数 n 、x 和 y 。在城市中,存在编号从 1 到 n 的房屋,由 n 条街道相连。对所有 1

ix+jyix+yjxi+jyxi+yji>=x,j>=yx>=i,j<yi<x,j>=yi<x,j<y

我们枚举i,计算j,故x,y,i可以看做常数,可以求出相等的临界值的j。
情况二一:
i-x + j- y <= j – i -1

rightarrow

2i -x – y <= -1

rightarrow

2i <= x+y-1

rightarrow


{

i

x

y

j

2

i

<

=

x

+

y

1

i

j

e

l

s

e

begin{cases} i rightarrow x rightarrow y rightarrow j & 2*i <= x+y-1\ i rightarrow j & else end{cases}

{ixyjij2i<=x+y1else
和j无关

情况二三:
i-x +y-j <= j – i -1

rightarrow

2*(i-j) -x + y <= -1

rightarrow

-2j <= x – y – 2i -1注意除以-1,大于会变小于

rightarrow

2j >= y-x+2i+1

rightarrow

j >= (y-x)/2 + i +1

{

i

x

y

j

j

>

=

(

y

x

)

/

2

+

i

+

1

i

j

e

l

s

e

begin{cases} i rightarrow x rightarrow y rightarrow j & j >= (y-x)/2 + i +1 \ i rightarrow j & else end{cases}

{ixyjijj>=(yx)/2+i+1else
情况二四:
要想通过x,y 必须 x-i + j- y <= j – i -1

rightarrow

x-y <= -1

rightarrow

x <y,恒成立。

情况二六:
要想通过x,y,必须 x-i+y-j <= j – i -1

rightarrow

x+y-2j <= -1

rightarrow

-2j <= -x-y-1 注意除以-1,大于会变小于

rightarrow

2j >= x+y+1

rightarrow

j>=(x+y+1+1)/2

{

i

x

y

j

>

=

(

x

+

y

+

1

+

1

)

/

2

i

j

e

l

s

e

begin{cases} i rightarrow x rightarrow y rightarrow & j>=(x+y+1+1)/2 \ i rightarrow j & else end{cases}

{ixyijj>=(x+y+1+1)/2else

y >= 0 整除2的逆运算

2x >= y ,如果y是偶数 等效与 x >= y/2 。如果y是奇数,等效与 x >= (y+1)/2 。两者可以统一为: x >=(y+1)/2 。
2
x > y 如果y是偶数 等效与 x > y/2 。如果y是奇数,等效与 x > y/2。两者统一为x > y/2。
2x <= y 可以统一为 x <=y/2。
2
x < y 可以统一为:x < ( y+1)/2

代码

核心代码

class Solution {
public:
	vector<long long> countOfPairs(int n, int x, int y) {		
		vector<long long> vRet(n);
		if (x == y)
		{
			vRet.clear();
			for (int i = n - 1; i >= 0; i--)
			{
				vRet.emplace_back(i * 2);
			}
			return vRet;
		}
		if (x > y )
		{
			swap(x, y);
		}
		x--;
		y--;
		int i = 0;
#define Path1(j) (j - i -1 )
		auto Path2 = [&i,&x,&y]( const int j)
		{
			return abs(i - x) + abs(j - y);
		};
		vector<long long> vDiff(n);
		auto Add = [&](int left, int len)
		{
			if (len <= 0)
			{
				return;
			}
			vDiff[left] += 2 ;
			vDiff[left+len] -= 2 ;
		};
		
		for (; i < x; i++)
		{
			//j 在[y,n)
			const int iy = max(i + 1, y);
			if (n - iy > 0)
			{
				Add(Path2(iy), n - iy);
			}	
			//j在(i,y)
			if( y - i -1 > 0 )
			{//i->x->y-j [j0,y)
				const int j0 = (x + y + 2) / 2;	
				Add(Path2(y-1), y - j0);
				//(i,j0)
				Add(0, j0 - i - 1);
			}
		}
		for (; i < n; i++)
		{
			//j在(max(y-1,i),n)
			if (2*i <= x + y-1)
			{//i->x->y-j
				Add(Path2(max(y-1, i) +1), n - max(y-1, i) -1);
			}
			else
			{
				Add(Path1(max(y-1, i) +1), n - max(y-1, i) -1);
			}
			//j在(i,y)
			if (y - i - 1 > 0)
			{
				int j0 = min(y,(2 * i + y - x + 2) / 2);
				j0 = max(j0, i + 1);
				//if (y - j0 >= 0)
				{
					//j在[j0,y) i->x->y-j 
					Add(Path2(y - 1), y - j0);
					//j在(i,j0)
					Add(0, j0 - i - 1);
				}
			}
		}
		
		long long cur=0;
		for (int i = 0; i < n; i++)
		{
			cur += vDiff[i];
			vRet[i] = cur;
		}
		return vRet;
	}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{	
	int n,  x,  y;

	{
		Solution sln;
		n = 6, x = 1, y = 5;
		auto res = sln.countOfPairs(n, x, y);
		Assert(res, vector<long long>{ 12, 14, 4, 0, 0, 0 });
	}

	{
		Solution sln;
		n = 3, x = 2, y = 2;
		auto res = sln.countOfPairs(n, x, y);
		Assert(res, vector<long long>{4, 2, 0});
	}

	{
		Solution sln;
		n = 4, x = 1, y = 1;
		auto res = sln.countOfPairs(n, x, y);
		Assert(res, vector<long long>{6, 4, 2, 0});
	}
	{
		Solution sln;
		n = 5, x = 2, y = 4;
		auto res = sln.countOfPairs(n, x, y);
		Assert(res, vector<long long>{10, 8, 2, 0, 0});
	}
	
	
	{
		Solution sln;
		n = 3, x = 1, y = 3;		
		auto res = sln.countOfPairs(n,x,y);
		Assert(res, vector<long long>{6, 0, 0});
	}		
	
	{
		Solution sln;
		n = 2, x = 2, y = 2;
		auto res = sln.countOfPairs(n, x, y);
		Assert(res, vector<long long>{2, 0});
	}
	
	

	
}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

原文地址:https://blog.csdn.net/he_zhidan/article/details/135728505

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_60452.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注