本文介绍: 在这个变体中,w1、w2和v,分别是两个权重矩阵和一个权重向量;tanh是一个激活函数。这样的话最后也可以得到一个标量,作为前面的注意力分数。如果两个向量的维度不一样,我们就需要在中间加上一个权重矩阵,来实现他们之间的相乘,然后最后得到一个标量。它和前面的有一个比较大的不同,它使用了一层的前馈神经网络,来将两个向量变成一个标量,来得到注意力分数。此外还有许多其他的变体,可执行查找了解。

transformer structure注意力机制的各种变体

第二种变体:

如果两个向量的维度不一样,我们就需要在中间加上一个权重矩阵,来实现他们之间的相乘,然后最后得到一个标量

第三种变体:

additive attention

它和前面的有一个比较大的不同,它使用了一层的前馈神经网络,来将两个向量变成一个标量,来得到注意力分数

在这个变体中,w1、w2和v,分别是两个权重矩阵和一个权重向量;tanh是一个激活函数。这样的话最后也可以得到一个标量,作为前面的注意力分数

此外还有许多其他的变体,可执行查找了解。

原文地址:https://blog.csdn.net/weixin_58810992/article/details/135731783

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_61491.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注