本文介绍: 结合了语言、视觉和最近的行动的基础模型彻底改变了利用互联网规模数据来推理有用任务的能力。在本文中,我们提出了 AutoRT,这是一个利用现有基础模型在完全看不见的场景中以最少的人工监督来扩大操作机器人部署的系统。通过实验表明,AutoRT 收集的此类“野外”数据明显更加多样化,并且 AutoRT 使用 LLMs 允许遵循能够符合人类偏好的数据收集机器人的指令。实验表明,AutoRT 收集的此类“野外”数据明显更加多样化,并且 AutoRT 使用 LLMs 允许遵循能够符合人类偏好的数据收集机器人的指令。
演示 AutoRT 向多个建筑物中的20多个机器人提出指令,并通过远程操作和自主机器人策略收集77,000个真实的机器人事件。实验表明,AutoRT 收集的此类“野外”数据明显更加多样化,并且 AutoRT 使用 LLMs 允许遵循能够符合人类偏好的数据收集机器人的指令。
论文网址: https://huggingface.co/papers/2401.12963
结合了语言、视觉和最近的行动的基础模型彻底改变了利用互联网规模数据来推理有用任务的能力。然而,训练具体基础模型的关键挑战之一是缺乏基于物理世界的数据。在本文中,我们提出了 AutoRT,这是一个利用现有基础模型在完全看不见的场景中以最少的人工监督来扩大操作机器人部署的系统。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。