本文介绍: 是一个流行的“文本对回归”任务。例如,在语义文本相似度基准数据集(Semantic Textual Similarity Benchmark)中,句子对的相似度得分是从0(无语义重叠)到5(语义等价)的分数区间。对于文本对回归任务(如语义文本相似性),可以应用细微的更改,例如输出连续的标签值和使用均方损失:它们在回归中很常见。”),“A woman is eating meat.”(“一个女人在吃肉。”),“An air plane is taking off.”(“一架飞机正在起飞。”),0.000分。

我们研究了自然语言推断。它属于文本对分类,这是一种对文本进行分类的应用类型。

以一对文本作为输入但输出连续值,语义文本相似度是一个流行的“文本对回归”任务。 这项任务评估句子的语义相似度。例如,在语义文本相似度基准数据集(Semantic Textual Similarity Benchmark)中,句子对的相似度得分是从0(无语义重叠)到5(语义等价)的分数区间。我们的目标是预测这些分数。来自语义文本相似性基准数据集的样本包括(句子1,句子2,相似性得分):

  • “A plane is taking off.”(“一架飞机正在起飞。”),“An air plane is taking off.”(“一架飞机正在起飞。”),5.000分;

  • “A woman is eating something.”(“一个女人在吃东西。”),“A woman is eating meat.”(“一个女人在吃肉。”),3.000分;

  • “A woman is dancing.”(一个女人在跳舞。),“A man is talking.”(“一个人在说话。”),0.000分。

文本对分类或回归应用的BERT微调,如自然语言推断和语义文本相似性(假设输入文本对分别有两个词元和三个词元)
文本对分类或回归应用的BERT微调,如自然语言推断和语义文本相似性(假设输入文本对分别有两个词元和三个词元)

与单文本分类相比,上图中的文本对分类的BERT微调在输入表示上有所不同。对于文本对回归任务(如语义文本相似性),可以应用细微的更改,例如输出连续的标签值和使用均方损失:它们在回归中很常见。

原文地址:https://blog.csdn.net/weixin_43227851/article/details/135857136

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_63187.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注