本文介绍: 前面的文章里作者介绍了多目标灰狼优化算法(Multi-Objective Grey Wolf Optimizer,MOGWO),该算法是由Mirjalili等(灰狼算法的提出者)于2016年提出[1],发表在中科院一区期刊《expert systems with applications》。MOGWO保留了灰狼算法的种群更新机制,即通过模拟灰狼的严格等级制度以及自然界中的狩猎和捕食行为来迭代搜索优化,因此具有收敛速度快、效率高以及精度高等优点。
前面的文章里作者介绍了多目标灰狼优化算法(Multi-Objective Grey Wolf Optimizer,MOGWO),该算法是由Mirjalili等(灰狼算法的提出者)于2016年提出[1],发表在中科院一区期刊《expert systems with applications》。
MOGWO保留了灰狼算法的种群更新机制,即通过模拟灰狼的严格等级制度以及自然界中的狩猎和捕食行为来迭代搜索优化,因此具有收敛速度快、效率高以及精度高等优点。当然,每种元启发式算法都不是完美的,面对复杂高维问题,MOGWO也会有早熟收敛、陷入局部最优等问题。因此本文从以下几个方面对MOGWO进行改进:收敛因子、种群初始化、围猎机制、头狼更新
00 文章目录
1 多目标灰狼优化算法原理
2 改进的多目标灰狼优化算法
3 代码目录
01 多目标灰狼优化算法原理
02 改进的多目标灰狼优化算法
03 代码目录
04 算法性能
05 源码获取
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。