本文介绍: Spark任务的实际运算是交由众多executor来执行的,如果再执行算子内部打印日志,是需要到对应的executor上才能看到。当不知道对应executor的情况下就需要挨个查询日志,是否不方便。是否有办法可以收集所有executor上的日志内容打印在driver上呢?这样就可以直接在stdout里看到所有日志。
Spark任务的实际运算是交由众多executor来执行的,如果再执行算子内部打印日志,是需要到对应的executor上才能看到。当不知道对应executor的情况下就需要挨个查询日志,是否不方便。是否有办法可以收集所有executor上的日志内容打印在driver上呢?这样就可以直接在stdout里看到所有日志。
Accumulator
spark累加器Accumulator是spark提共的两种共享变量(广播变理和累加器)的一种。为什么要使用共享变量呢?通常情况下,当向Spark操作(如map,reduce)传递一个函数时,它会在一个远程集群节点上执行,它会使用函数中所有变量的副本。这些变量被复制到所有的机器上,远程机器上并没有被更新的变量会向驱动程序回传,也就是说有结果Driver程序是拿不到的!共享变量就是为了解决这个问题。本博文介绍其中的一种累加器Accumulator。
累加器只能够增加。 只有driver能获取到Accumulator的值(使用value方法),Task(excutor)只能对其做增加操作(使用 +=)。
如何使用Accumulator收集日志
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。