本文介绍: 你需要制定一份 d 天的工作计划表。工作之间存在依赖,要想执行第 i 项工作,你必须完成全部 j 项工作( 0

作者推荐

【动态规划】【字符串】【表达式】2019. 解出数学表达式的学生分数

本文涉及知识点

动态规划汇总

LeetCode1335. 工作计划的最低难度

你需要制定一份 d 天的工作计划表。工作之间存在依赖,要想执行第 i 项工作,你必须完成全部 j 项工作( 0 <= j < i)。
你每天 至少 需要完成一项任务。工作计划的总难度是这 d 天每一天的难度之和,而一天的工作难度是当天应该完成工作的最大难度。
给你一个整数数组 jobDifficulty 和一个整数 d,分别代表工作难度和需要计划的天数。第 i 项工作的难度是 jobDifficulty[i]。
返回整个工作计划的 最小难度 。如果无法制定工作计划,则返回 -1 。
示例 1:
输入:jobDifficulty = [6,5,4,3,2,1], d = 2
输出:7
解释:第一天,您可以完成前 5 项工作,总难度 = 6.
第二天,您可以完成最后一项工作,总难度 = 1.
计划表的难度 = 6 + 1 = 7
示例 2:
输入:jobDifficulty = [9,9,9], d = 4
输出:-1
解释:就算你每天完成一项工作,仍然有一天是空闲的,你无法制定一份能够满足既定工作时间的计划表。
示例 3:
输入:jobDifficulty = [1,1,1], d = 3
输出:3
解释:工作计划为每天一项工作,总难度为 3 。
示例 4:
输入:jobDifficulty = [7,1,7,1,7,1], d = 3
输出:15
示例 5:
输入:jobDifficulty = [11,111,22,222,33,333,44,444], d = 6
输出:843

动态规划

预处理

如果任务数小于天数,直接返回-1。
vHard[left][r]表示第left项任务到第r项任务的最大难道。由于vHard[left[r+1] = max(vHard[left][r]+ jobDiffficulty[r+1]) 所有预处理的时间为O(n^n)。

动态规划的状态表示

pre[j]前i天完成j项任务最小难度,dp[j]前i+1天完成j项任务最小难度。

动态规划的转移方程

d

p

[

i

]

=

M

i

n

j

=

0

i

1

dp[i]=MinLarge_{j=0}^{i-1}

dp[i]=Minj=0i1(pre[j]+vHard[j][i-1])

动态规划的初始状态

dp[0]=0,其它全部1e6,表示非法状态。

动态规划的填表顺序

i,j 皆从小到大。

动态规划的返回值

pre.back

代码

核心代码

class Solution {
public:
	int minDifficulty(vector<int>& jobDifficulty, int d) {
		m_c = jobDifficulty.size();
		if (m_c < d)
		{
			return -1;
		}
		vector<vector<int>> vHard(m_c, vector<int>(m_c));
		for (int i = 0; i < m_c; i++)
		{
			vHard[i][i] = jobDifficulty[i];
			for (int j = i + 1; j < m_c; j++)
			{
				vHard[i][j] = max(vHard[i][j - 1], jobDifficulty[j]);
			}
		}
		vector<int> pre(m_c + 1, m_iNotMay);
		pre[0] = 0;
		while(d--)
		{
			vector<int> dp(m_c + 1, m_iNotMay);
			for (int j = 1; j <= m_c; j++)
			{
				for (int k = 0; k < j; k++)
				{
					dp[j] = min(dp[j], pre[k] + vHard[k][j-1]);
				}
			}
			pre.swap(dp);
		}
		return pre.back();
	}
	int m_c;
	const int m_iNotMay = 1000'000;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{	
	vector<int> jobDifficulty;
	int d;
	{
		Solution sln;
		jobDifficulty = { 6, 5, 4, 3, 2, 1 }, d = 2;
		auto res = sln.minDifficulty(jobDifficulty, d);
		Assert(7, res);
	}

	{
		Solution sln;
		jobDifficulty = { 9, 9, 9 }, d = 4;
		auto res = sln.minDifficulty(jobDifficulty, d);
		Assert(-1, res);
	}

	{
		Solution sln;
		jobDifficulty = { 1, 1, 1 }, d = 3;
		auto res = sln.minDifficulty(jobDifficulty, d);
		Assert(3, res);
	}

	{
		Solution sln;
		jobDifficulty = { 7, 1, 7, 1, 7, 1 }, d = 3;
		auto res = sln.minDifficulty(jobDifficulty, d);
		Assert(15, res);
	}
	{
		Solution sln;
		jobDifficulty = { 11, 111, 22, 222, 33, 333, 44, 444 }, d = 6;
		auto res = sln.minDifficulty(jobDifficulty, d);
		Assert(843, res);
	}
}

2023年2月 第一版

class Solution {
public:
int minDifficulty(vector& jobDifficulty, int d) {
std::unordered_map<int, std::unordered_map<int, int>> mDayMaxJobIndexs;
mDayMaxJobIndexs[1][0] = jobDifficulty[0];
for (int i = 1; i < jobDifficulty.size(); i++)
{
std::unordered_map<int, std::unordered_map<int, int>> dp;
for (const auto& it : mDayMaxJobIndexs)
{
const int& iDay = it.first;
for (const auto& ij : it.second)
{
const int& iMaxJobIndex = ij.first;
const int& iValue = ij.second;
if (jobDifficulty[i] > jobDifficulty[iMaxJobIndex])
{
Test(dp, iDay, i, iValue + jobDifficulty[i] – jobDifficulty[iMaxJobIndex] );
}
else
{
Test(dp, iDay, iMaxJobIndex, iValue);
}
if (iDay < d)
{
Test(dp, iDay + 1, i, iValue + jobDifficulty[i]);
}
}
}
dp.swap(mDayMaxJobIndexs);
}
auto it = mDayMaxJobIndexs.find(d);
if (mDayMaxJobIndexs.end() == it)
{
return -1;
}
int iMin = INT_MAX;
for (const auto& ij : it->second)
{
iMin = min(iMin, ij.second);
}
return iMin;
}
void Test(std::unordered_map<int, std::unordered_map<int, int>>& dp, int iDay, int iMaxJobIndex, int iValue )
{
auto it = dp[iDay].find(iMaxJobIndex);
if (dp[iDay].end() == it)
{
dp[iDay][iMaxJobIndex] = iValue;
}
else
{
it->second = min(it->second, iValue);
}
}
};

2023年8月版

class Solution {
public:
int minDifficulty(vector& jobDifficulty, int d) {
m_c = jobDifficulty.size();
vector<vector> vMax(m_c, vector(m_c)); //vMax[i][i]表示[i,j]的最大值
for (int left = m_c – 1; left >= 0; left–)
{
vMax[left][left] = jobDifficulty[left];
for (int r = m_c-1 ; r > left; r–)
{
vMax[left][r] = max(jobDifficulty[left], vMax[left + 1][r]);
}
}
vector pre(m_c + 1, INT_MAX);//pre[i]表示已经处理了i项的最小难度
pre[0] = 0;
for (int i = 0; i < d; i++)
{
vector dp(m_c + 1, INT_MAX);
for (int cur = i + 1; cur <= m_c; cur++)
{
for (int pr = 0; pr < cur; pr++)
{
if (INT_MAX == pre[pr])
{
continue;
}
dp[cur] = min(dp[cur], pre[pr] + vMax[pr][cur – 1]);
}
}
pre.swap(dp);
}
return (INT_MAX == pre.back()) ? -1 : pre.back();
}
int m_c;
};

2023年8月 第二版

class Solution {
public:
int minDifficulty(vector& jobDifficulty, int d) {
m_c = jobDifficulty.size();
if (m_c < d)
{
return -1;
}
vector<vector> vMax(m_c, vector(m_c)); //vMax[i][i]表示[i,j]的最大值
for (int left = m_c – 1; left >= 0; left–)
{
vMax[left][left] = jobDifficulty[left];
for (int r = m_c-1 ; r > left; r–)
{
vMax[left][r] = max(jobDifficulty[left], vMax[left + 1][r]);
}
}
vector pre(m_c , INT_MAX);//pre[i]表示已经处理了i项的最小难度
for (int i = 0; i < d; i++)
{
vector dp(m_c , INT_MAX);
std::stack<std::tuple<int, int, int>> sta;//工作难度 dp[0]到当前的最小难度 被pop的pre最小难度
if (i > 0)
{
dp[i] = jobDifficulty[i] + pre[i – 1];
sta.emplace(jobDifficulty[i], dp[i], pre[i -1]);
}
else
{
dp[i] = jobDifficulty[i];
sta.emplace(jobDifficulty[i], dp[i], 0);
}
for (int cur = i+1; cur < m_c; cur++)
{
const int& curDiff = jobDifficulty[cur];
int iPrePopMin = pre[cur – 1];
while (sta.size() && (get<0>(sta.top()) <= curDiff))
{
iPrePopMin = min(iPrePopMin, get<2>(sta.top()));
sta.pop();
}
int curRet = (INT_MAX ==iPrePopMin) ? INT_MAX : (curDiff+iPrePopMin);
if (sta.size())
{
curRet = min(curRet, get<1>(sta.top()));
}
dp[cur] = curRet;
sta.emplace(curDiff, curRet, iPrePopMin);
}
pre.swap(dp);
}
return (INT_MAX == pre.back()) ? -1 : pre.back();
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

原文地址:https://blog.csdn.net/he_zhidan/article/details/135813454

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_65373.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注