本文介绍: 使用状态机,第一次进入之后,进入下一个状态,如果电平还是刚刚的电平说明真的按下,如果不是重新进入第一个状态重新判断,定时器定时时间10ms刚好消抖,最后一个case2是判断如果按键松开,说明可以进入下一次判断。只有最后四个函数是本人写的,其余为蓝桥杯官方提供,主要是两种i2c时序,指定地址写和指定地址读的时序,重点在读需要首先写入要读取的地址之后再开始读,浮点数的存储使用联合体union。处理按键任务,用户多个界面之间的转换以及上报时间的设置,根据当前lcd的状态,来决定按键按下的功能。

蓝桥杯嵌入式第六届真题(完成)STM32G431

题目部分

image-20240131021944807

image-20240131021954358

image-20240131022003532

image-20240131022011969

相关文件

main.c
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "rtc.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "i2c_hal.h"
#include "key.h"
#include "myadc.h"
#include "led.h"
#include "string.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
uint8_t lcdtext[30];
extern struct Key key[4];
uint8_t view = 0;//鍒濆lcd鏄剧ず
RTC_TimeTypeDef Time;
RTC_DateTypeDef Date;
uint8_t h=0,m=0,s=0;
float val;
float k = 0.1;
uint8_t ledflag = 1;
uint8_t ledtimes;
extern unsigned char Recive_Data[5];
extern unsigned char Temp_Data[1];
extern bool rxflag;
extern unsigned char rx_pointer;
uint32_t counter = 0;
bool ledState = false;
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void key_process(void);
void lcd_process(void);
void led_process(void);
void rx_process(void);
void tx_process(void);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM2_Init();
  MX_ADC2_Init();
  MX_RTC_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
		HAL_TIM_Base_Start_IT(&htim2);
		HAL_UART_Receive_IT(&huart1, Temp_Data, 1);
    LCD_Init();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
    LCD_Clear(Black);
    LCD_SetBackColor(Black);
    LCD_SetTextColor(White);
	  //EEPROM_Write_Float(0,0.9);
		//HAL_Delay(5);
    while (1)
    {
      lcd_process();
      //EEPROM_Write(0,20);
      // HAL_RTC_GetDate(&hrtc,&Date,RTC_FORMAT_BIN);
      // HAL_RTC_GetTime(&hrtc,&Time,RTC_FORMAT_BIN);
      // sprintf((char *)lcdtext,"%.2f",get_adc(&hadc2));
      // LCD_DisplayStringLine(Line2,lcdtext);
      // sprintf((char *)lcdtext,"%02d-%02d-%02d",Time.Hours,Time.Minutes,Time.Seconds);
      // LCD_DisplayStringLine(Line4,lcdtext);
			key_process();
      led_process();
      rx_process();
			tx_process();
      
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV2;
  RCC_OscInitStruct.PLL.PLLN = 20;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the peripherals clocks
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC|RCC_PERIPHCLK_USART1
                              |RCC_PERIPHCLK_ADC12;
  PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
  PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
  PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;

  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */
void key_process(void)
{
  if(key[0].key_flag==1&&view==0)
  {
    LCD_Clear(Black);
    key[0].key_flag=0;
    view = 1;
    ledflag = 0;
  }
  else if(key[0].key_flag==1&&view==1)
  {
    LCD_Clear(Black);
    key[0].key_flag=0;
    view = 0;
    ledflag = 1;
  }
  if(key[1].key_flag==1&&(view==0||view==1))
  {
    LCD_Clear(Black);
    key[1].key_flag=0;
    view = 2;

  }
	if(key[1].key_flag==1&&(view==3||view==4||view==5))
  {
    LCD_Clear(Black);
    key[1].key_flag=0;
    view = 0;

  }
  if(key[2].key_flag==1&&(view==2||view==3||view==4||view==5))
  {
    LCD_Clear(Black);
    key[2].key_flag=0;
    view++;
    if(view>5)
    {
      view = 3;
    }
  }
  if(key[3].key_flag==1&&view==3)
  {
    LCD_Clear(Black);
    key[3].key_flag=0;
    h++;
    if(h>24)
    {
      h=0;
    }
  }
  else if (key[3].key_flag==1&&view==4)
  {
    LCD_Clear(Black);
    key[3].key_flag=0;
    m++;
    if(m>60)
    {
      m=0;
    }
  }
  else if (key[3].key_flag==1&&view==5)
  {
    LCD_Clear(Black);
    key[3].key_flag=0;
    s++;
    if(s>60)
    {
      s=0;
    }
  }
  
  
}

void lcd_process(void)
{
  
  switch (view)
  {
  case 0: //LED鎵撳紑鐣岄潰
    {
     val = get_adc(&hadc2);

    sprintf((char *)lcdtext,"    V1:%.2f  ",val);
    LCD_DisplayStringLine(Line1,lcdtext);

    sprintf((char *)lcdtext,"    K:%.1f  ",EEPROM_Read_Float(0));
    LCD_DisplayStringLine(Line3,lcdtext);

    sprintf((char *)lcdtext,"    LED:ON  ");
    LCD_DisplayStringLine(Line5,lcdtext);
    HAL_RTC_GetDate(&hrtc,&Date,RTC_FORMAT_BIN);
    HAL_RTC_GetTime(&hrtc,&Time,RTC_FORMAT_BIN);
    sprintf((char *)lcdtext,"    T:%02d-%02d-%02d",Time.Hours,Time.Minutes,Time.Seconds);
    LCD_DisplayStringLine(Line7,lcdtext);
    
    }
    break;
  case 1://LED鍏抽棴鐣岄潰
    {
    val = get_adc(&hadc2);

    sprintf((char *)lcdtext,"    V1:%.2f  ",val);
    LCD_DisplayStringLine(Line1,lcdtext);

    sprintf((char *)lcdtext,"    K:%.1f  ",EEPROM_Read_Float(0));
    LCD_DisplayStringLine(Line3,lcdtext);

    sprintf((char *)lcdtext,"    LED:OFF  ");
    LCD_DisplayStringLine(Line5,lcdtext);
    HAL_RTC_GetDate(&hrtc,&Date,RTC_FORMAT_BIN);
    HAL_RTC_GetTime(&hrtc,&Time,RTC_FORMAT_BIN);
    sprintf((char *)lcdtext,"    T:%02d-%02d-%02d",Time.Hours,Time.Minutes,Time.Seconds);
    LCD_DisplayStringLine(Line7,lcdtext);
    
    }
    break;
    case 2://璁剧疆鐣岄潰
    {

    sprintf((char *)lcdtext,"       Setting  ");
    LCD_DisplayStringLine(Line3,lcdtext);

    sprintf((char *)lcdtext,"    %02d - %02d - %02d",h,m,s);
    LCD_DisplayStringLine(Line5,lcdtext);
    
    }
    break;
    case 3://璁剧疆灏忔椂鐣岄潰
    {

    sprintf((char *)lcdtext,"       Setting  ");
    LCD_DisplayStringLine(Line3,lcdtext);

    sprintf((char *)lcdtext,"    %02d - %02d - %02d",h,m,s);
    LCD_DisplayStringLine(Line5,lcdtext);
    sprintf((char *)lcdtext,"    --");
    LCD_DisplayStringLine(Line6,lcdtext);
    
    }
    break;
    case 4://璁剧疆鍒嗛挓鐣岄潰
    {

    sprintf((char *)lcdtext,"       Setting  ");
    LCD_DisplayStringLine(Line3,lcdtext);

    sprintf((char *)lcdtext,"    %02d - %02d - %02d",h,m,s);
    LCD_DisplayStringLine(Line5,lcdtext);
    sprintf((char *)lcdtext,"         --");
    LCD_DisplayStringLine(Line6,lcdtext);
    
    }
    break;
    case 5://璁剧疆绉掔晫闈?
    {

    sprintf((char *)lcdtext,"       Setting  ");
    LCD_DisplayStringLine(Line3,lcdtext);

    sprintf((char *)lcdtext,"    %02d - %02d - %02d",h,m,s);
    LCD_DisplayStringLine(Line5,lcdtext);
    sprintf((char *)lcdtext,"              --");
    LCD_DisplayStringLine(Line6,lcdtext);
    
    }
    break;
  default:
    break;
  }
    
}

void led_process(void)
{
  if (ledflag && val > 3.3f * k)
  {
    
    if (ledState)
    {
      leddisplay(0x02);
		}else{
			leddisplay(0x00);
		}
    
  }
}

void rx_process(void)
{
	if(rxflag)
	{
		if(Recive_Data[3] == '1')
		{
			k = 0.1;

			char My_sentdata[30];
			sprintf(My_sentdata,"okn");
			HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
		}
		else if(Recive_Data[3] == '2')
		{
			k = 0.2;
			char My_sentdata[30];
			sprintf(My_sentdata,"okn");
			HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
		}
		else if(Recive_Data[3] == '3')
		{
			k = 0.3;
			char My_sentdata[30];
			sprintf(My_sentdata,"okn");
			HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
		}
		else if(Recive_Data[3] == '4')
		{
			k = 0.4;
			char My_sentdata[30];
			sprintf(My_sentdata,"okn");
			HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
		}
		else if(Recive_Data[3] == '5')
		{
			k = 0.5;
			char My_sentdata[30];
			sprintf(My_sentdata,"okn");
			HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
		}
		else if(Recive_Data[3] == '6')
		{
			k = 0.6;
			char My_sentdata[30];
			sprintf(My_sentdata,"okn");
			HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
		}
		else if(Recive_Data[3] == '7')
		{
			k = 0.7;
			char My_sentdata[30];
			sprintf(My_sentdata,"okn");
			HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
		}
		else if(Recive_Data[3] == '8')
		{
			k = 0.8;
			char My_sentdata[30];
			sprintf(My_sentdata,"okn");
			HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
		}
		else if(Recive_Data[3] == '9')
		{
			k = 0.9;
			char My_sentdata[30];
			sprintf(My_sentdata,"okn");
			HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
		}
		
		EEPROM_Write_Float(0,k);
		rx_pointer=0;
		rxflag=false; 
		memset(Recive_Data,0,5);
	}
	
}


void tx_process(void)
{
    static bool already_sent = false;

    if(Time.Hours == h && Time.Minutes == m && Time.Seconds == s)
    {
        if (!already_sent) // 检查是否已经发送过数据
        {
            char My_sentdata[30];
            sprintf(My_sentdata,"%.2f+%.1f+%02d%02d%02dn", val, k, h, m, s);
            HAL_UART_Transmit(&huart1, (uint8_t*)My_sentdata, strlen(My_sentdata), 50);
            already_sent = true; // 标记已发送
        }
    }
    else
    {
        already_sent = false; // 当时间改变时重置标志
    }
}

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
    /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
    /* User can add his own implementation to report the file name and line number,
       tex: printf("Wrong parameters value: file %s on line %drn", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

void key_process(void);

处理按键任务,用户多个界面之间的转换以及上报时间的设置,根据当前lcd的状态,来决定按键按下的功能

void lcd_process(void);

显示各种状态,使用状态机,显示不同状态,使用sprinf函数格式化重定向字符串

void led_process(void);

控制led闪烁,使用一个计数值,在抵达定时器中++实现200ms计数

image-20240131022539272

void rx_process(void);

控制串口发送的数据,不知为何HAL_UART_Receive_IT(huart, Temp_Data, 1);中如果不是1,就会只能进入一次串口接收回调函数,所以使用每次接收一个然后设置一个缓冲区,控制指针来一次接收5个数据,只有接受完五个数据即进入5次串口接收回调函数后才执行解析函数,注意最后全波清0

void tx_process(void);

控制上报的数据,当rtc时钟的时间到达设置时间发送数据

led.c
#include "led.h"

void leddisplay(uint8_t led)
{
    HAL_GPIO_WritePin(GPIOC,GPIO_PIN_All,GPIO_PIN_SET);
    HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET);
    HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET);
    HAL_GPIO_WritePin(GPIOC,led<<8,GPIO_PIN_RESET);
    HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET);
    HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET);
}

该板子是低电平点亮,8个led灯使用的是高8位所以需要左移8位,led等于几就是将高8位中第几位设置成低电平即点亮,由于led与lcd复用引脚最后打开锁存器让值被写入之后,立刻关闭锁存器防止影响lcd

myadc.c
#include "myadc.h"


float get_adc(ADC_HandleTypeDef *hadc)
{
	float val;
	// 等待ADC转换完成
	HAL_ADC_Start(hadc);
	val = HAL_ADC_GetValue(hadc);
	return val*3.3f/4096;
}

usart1.c
#include "usart1.h"
#include "string.h"
#include "usart.h"
#include "stdbool.h"
extern float k;
unsigned char Recive_Data[5];
unsigned char Temp_Data[1];
unsigned char rx_pointer = 0;
bool rxflag = false;
char usartsend[30];
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{

    
  if(huart->Instance==USART1)
	{
		Recive_Data[rx_pointer++] = Temp_Data[0];
		HAL_UART_Receive_IT(huart, Temp_Data, 1);
		if(Recive_Data[4]!=0)
		{
			rxflag = true;
		}
	
	}
}


接收完四个之后置一个标志位,rx_process才能执行,每次都需调用HAL_UART_Receive_IT函数重新开启串口接收

key.c
#include "key.h"
#include "led.h"
struct Key key[4]={0,0,0,0};
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
	if(htim->Instance==TIM2)
	{
		
		key[0].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_0);
		key[1].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_1);
		key[2].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_2);
		key[3].key_gpio = HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_0);
		
		for(int i = 0; i<4;i++)
		{
			switch (key[i].key_index)
			{
			case 0:/* constant-expression */
				{
					if(key[i].key_gpio==0)
					{
						key[i].key_index = 1;
					}

				}
				break;
			case 1:
				{
					if(key[i].key_gpio==0)
					{
						key[i].key_index = 2;
						key[i].key_flag=1;
					}else{
						key[i].key_index = 0;
					}
				}
			case 2:
				{
					if(key[i].key_gpio==1)
					{
						key[i].key_index=0;
					}
				}
				break;
			}
			
		}
		
	}
}


使用状态机,第一次进入之后,进入下一个状态,如果电平还是刚刚的电平说明真的按下,如果不是重新进入第一个状态重新判断,定时器定时时间10ms刚好消抖,最后一个case2是判断如果按键松开,说明可以进入下一次判断。

i2c_hal.c
/*
  程序说明: CT117E-M4嵌入式竞赛板GPIO模拟I2C总线驱动程序
  软件环境: MDK-ARM HAL库
  硬件环境: CT117E-M4嵌入式竞赛板
  日    期: 2020-3-1
*/

#include "i2c_hal.h"
#include "main.h"
#define DELAY_TIME	20

/**
  * @brief SDA线输入模式配置
  * @param None
  * @retval None
  */
void SDA_Input_Mode()
{
    GPIO_InitTypeDef GPIO_InitStructure = {0};

    GPIO_InitStructure.Pin = GPIO_PIN_7;
    GPIO_InitStructure.Mode = GPIO_MODE_INPUT;
    GPIO_InitStructure.Pull = GPIO_PULLUP;
    GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}

/**
  * @brief SDA线输出模式配置
  * @param None
  * @retval None
  */
void SDA_Output_Mode()
{
    GPIO_InitTypeDef GPIO_InitStructure = {0};

    GPIO_InitStructure.Pin = GPIO_PIN_7;
    GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_OD;
    GPIO_InitStructure.Pull = GPIO_NOPULL;
    GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}

/**
  * @brief SDA线输出一个位
  * @param val 输出的数据
  * @retval None
  */
void SDA_Output( uint16_t val )
{
    if ( val )
    {
        GPIOB->BSRR |= GPIO_PIN_7;
    }
    else
    {
        GPIOB->BRR |= GPIO_PIN_7;
    }
}

/**
  * @brief SCL线输出一个位
  * @param val 输出的数据
  * @retval None
  */
void SCL_Output( uint16_t val )
{
    if ( val )
    {
        GPIOB->BSRR |= GPIO_PIN_6;
    }
    else
    {
        GPIOB->BRR |= GPIO_PIN_6;
    }
}

/**
  * @brief SDA输入一位
  * @param None
  * @retval GPIO读入一位
  */
uint8_t SDA_Input(void)
{
	if(HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_7) == GPIO_PIN_SET){
		return 1;
	}else{
		return 0;
	}
}


/**
  * @brief I2C的短暂延时
  * @param None
  * @retval None
  */
static void delay1(unsigned int n)
{
    uint32_t i;
    for ( i = 0; i < n; ++i);
}

/**
  * @brief I2C起始信号
  * @param None
  * @retval None
  */
void I2CStart(void)
{
    SDA_Output(1);
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    SDA_Output(0);
    delay1(DELAY_TIME);
    SCL_Output(0);
    delay1(DELAY_TIME);
}

/**
  * @brief I2C结束信号
  * @param None
  * @retval None
  */
void I2CStop(void)
{
    SCL_Output(0);
    delay1(DELAY_TIME);
    SDA_Output(0);
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    SDA_Output(1);
    delay1(DELAY_TIME);

}

/**
  * @brief I2C等待确认信号
  * @param None
  * @retval None
  */
unsigned char I2CWaitAck(void)
{
    unsigned short cErrTime = 5;
    SDA_Input_Mode();
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    while(SDA_Input())
    {
        cErrTime--;
        delay1(DELAY_TIME);
        if (0 == cErrTime)
        {
            SDA_Output_Mode();
            I2CStop();
            return ERROR;
        }
    }
    SDA_Output_Mode();
    SCL_Output(0);
    delay1(DELAY_TIME);
    return SUCCESS;
}

/**
  * @brief I2C发送确认信号
  * @param None
  * @retval None
  */
void I2CSendAck(void)
{
    SDA_Output(0);
    delay1(DELAY_TIME);
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    SCL_Output(0);
    delay1(DELAY_TIME);

}

/**
  * @brief I2C发送非确认信号
  * @param None
  * @retval None
  */
void I2CSendNotAck(void)
{
    SDA_Output(1);
    delay1(DELAY_TIME);
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    SCL_Output(0);
    delay1(DELAY_TIME);

}

/**
  * @brief I2C发送一个字节
  * @param cSendByte 需要发送的字节
  * @retval None
  */
void I2CSendByte(unsigned char cSendByte)
{
    unsigned char  i = 8;
    while (i--)
    {
        SCL_Output(0);
        delay1(DELAY_TIME);
        SDA_Output(cSendByte & 0x80);
        delay1(DELAY_TIME);
        cSendByte += cSendByte;
        delay1(DELAY_TIME);
        SCL_Output(1);
        delay1(DELAY_TIME);
    }
    SCL_Output(0);
    delay1(DELAY_TIME);
}

/**
  * @brief I2C接收一个字节
  * @param None
  * @retval 接收到的字节
  */
unsigned char I2CReceiveByte(void)
{
    unsigned char i = 8;
    unsigned char cR_Byte = 0;
    SDA_Input_Mode();
    while (i--)
    {
        cR_Byte += cR_Byte;
        SCL_Output(0);
        delay1(DELAY_TIME);
        delay1(DELAY_TIME);
        SCL_Output(1);
        delay1(DELAY_TIME);
        cR_Byte |=  SDA_Input();
    }
    SCL_Output(0);
    delay1(DELAY_TIME);
    SDA_Output_Mode();
    return cR_Byte;
}

//
void I2CInit(void)
{
    GPIO_InitTypeDef GPIO_InitStructure = {0};

    GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_6;
    GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStructure.Pull = GPIO_PULLUP;
    GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}


void EEPROM_Write(uint8_t address,uint8_t Data)
{
	
	I2CStart();
	I2CSendByte(0xA0);
	I2CWaitAck();
	
	I2CSendByte(address);
	I2CWaitAck();
	
	I2CSendByte(Data);
	I2CWaitAck();
	
	I2CStop();
}


uint8_t EEPROM_Read(uint8_t address)
{
	uint8_t data;
	I2CStart();
	I2CSendByte(0xA0);
	I2CWaitAck();
	I2CSendByte(address);
	I2CWaitAck();
	I2CStop();
	
	I2CStart();
	I2CSendByte(0xA1);
	I2CWaitAck();
	
	data = I2CReceiveByte();
	I2CWaitAck();
	I2CStop();
	
	
	return data;
	
}
	
	
void EEPROM_Write_Float(uint8_t address, float data)
{
    union FloatUnion fu;
    fu.floatval = data;

    for(int i = 0; i < sizeof(float); i++)
    {
        EEPROM_Write(address + i, fu.bytes[i]);
        HAL_Delay(5); 
		}
}


float EEPROM_Read_Float(uint8_t address)
{
   union FloatUnion fu;

    for(int i = 0; i < sizeof(float); i++)
    {
        fu.bytes[i] = EEPROM_Read(address + i);
    }

    return fu.floatval;
}

只有最后四个函数是本人写的,其余为蓝桥杯官方提供,主要是两种i2c时序,指定地址写和指定地址读的时序,重点在读需要首先写入要读取的地址之后再开始读,浮点数的存储使用联合体union

image-20240131023917944

floatval和bytes数组共用内存

可以看本人文章stm32教程中有对i2c四种时序的说明

原文地址:https://blog.csdn.net/Johnor/article/details/135944568

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_66285.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注