蓝桥杯嵌入式第六届真题(完成)STM32G431
题目部分
相关文件
main.c
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "rtc.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "i2c_hal.h"
#include "key.h"
#include "myadc.h"
#include "led.h"
#include "string.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
uint8_t lcdtext[30];
extern struct Key key[4];
uint8_t view = 0;//鍒濆lcd鏄剧ず
RTC_TimeTypeDef Time;
RTC_DateTypeDef Date;
uint8_t h=0,m=0,s=0;
float val;
float k = 0.1;
uint8_t ledflag = 1;
uint8_t ledtimes;
extern unsigned char Recive_Data[5];
extern unsigned char Temp_Data[1];
extern bool rxflag;
extern unsigned char rx_pointer;
uint32_t counter = 0;
bool ledState = false;
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void key_process(void);
void lcd_process(void);
void led_process(void);
void rx_process(void);
void tx_process(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM2_Init();
MX_ADC2_Init();
MX_RTC_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start_IT(&htim2);
HAL_UART_Receive_IT(&huart1, Temp_Data, 1);
LCD_Init();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
//EEPROM_Write_Float(0,0.9);
//HAL_Delay(5);
while (1)
{
lcd_process();
//EEPROM_Write(0,20);
// HAL_RTC_GetDate(&hrtc,&Date,RTC_FORMAT_BIN);
// HAL_RTC_GetTime(&hrtc,&Time,RTC_FORMAT_BIN);
// sprintf((char *)lcdtext,"%.2f",get_adc(&hadc2));
// LCD_DisplayStringLine(Line2,lcdtext);
// sprintf((char *)lcdtext,"%02d-%02d-%02d",Time.Hours,Time.Minutes,Time.Seconds);
// LCD_DisplayStringLine(Line4,lcdtext);
key_process();
led_process();
rx_process();
tx_process();
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV2;
RCC_OscInitStruct.PLL.PLLN = 20;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
/** Initializes the peripherals clocks
*/
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC|RCC_PERIPHCLK_USART1
|RCC_PERIPHCLK_ADC12;
PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
void key_process(void)
{
if(key[0].key_flag==1&&view==0)
{
LCD_Clear(Black);
key[0].key_flag=0;
view = 1;
ledflag = 0;
}
else if(key[0].key_flag==1&&view==1)
{
LCD_Clear(Black);
key[0].key_flag=0;
view = 0;
ledflag = 1;
}
if(key[1].key_flag==1&&(view==0||view==1))
{
LCD_Clear(Black);
key[1].key_flag=0;
view = 2;
}
if(key[1].key_flag==1&&(view==3||view==4||view==5))
{
LCD_Clear(Black);
key[1].key_flag=0;
view = 0;
}
if(key[2].key_flag==1&&(view==2||view==3||view==4||view==5))
{
LCD_Clear(Black);
key[2].key_flag=0;
view++;
if(view>5)
{
view = 3;
}
}
if(key[3].key_flag==1&&view==3)
{
LCD_Clear(Black);
key[3].key_flag=0;
h++;
if(h>24)
{
h=0;
}
}
else if (key[3].key_flag==1&&view==4)
{
LCD_Clear(Black);
key[3].key_flag=0;
m++;
if(m>60)
{
m=0;
}
}
else if (key[3].key_flag==1&&view==5)
{
LCD_Clear(Black);
key[3].key_flag=0;
s++;
if(s>60)
{
s=0;
}
}
}
void lcd_process(void)
{
switch (view)
{
case 0: //LED鎵撳紑鐣岄潰
{
val = get_adc(&hadc2);
sprintf((char *)lcdtext," V1:%.2f ",val);
LCD_DisplayStringLine(Line1,lcdtext);
sprintf((char *)lcdtext," K:%.1f ",EEPROM_Read_Float(0));
LCD_DisplayStringLine(Line3,lcdtext);
sprintf((char *)lcdtext," LED:ON ");
LCD_DisplayStringLine(Line5,lcdtext);
HAL_RTC_GetDate(&hrtc,&Date,RTC_FORMAT_BIN);
HAL_RTC_GetTime(&hrtc,&Time,RTC_FORMAT_BIN);
sprintf((char *)lcdtext," T:%02d-%02d-%02d",Time.Hours,Time.Minutes,Time.Seconds);
LCD_DisplayStringLine(Line7,lcdtext);
}
break;
case 1://LED鍏抽棴鐣岄潰
{
val = get_adc(&hadc2);
sprintf((char *)lcdtext," V1:%.2f ",val);
LCD_DisplayStringLine(Line1,lcdtext);
sprintf((char *)lcdtext," K:%.1f ",EEPROM_Read_Float(0));
LCD_DisplayStringLine(Line3,lcdtext);
sprintf((char *)lcdtext," LED:OFF ");
LCD_DisplayStringLine(Line5,lcdtext);
HAL_RTC_GetDate(&hrtc,&Date,RTC_FORMAT_BIN);
HAL_RTC_GetTime(&hrtc,&Time,RTC_FORMAT_BIN);
sprintf((char *)lcdtext," T:%02d-%02d-%02d",Time.Hours,Time.Minutes,Time.Seconds);
LCD_DisplayStringLine(Line7,lcdtext);
}
break;
case 2://璁剧疆鐣岄潰
{
sprintf((char *)lcdtext," Setting ");
LCD_DisplayStringLine(Line3,lcdtext);
sprintf((char *)lcdtext," %02d - %02d - %02d",h,m,s);
LCD_DisplayStringLine(Line5,lcdtext);
}
break;
case 3://璁剧疆灏忔椂鐣岄潰
{
sprintf((char *)lcdtext," Setting ");
LCD_DisplayStringLine(Line3,lcdtext);
sprintf((char *)lcdtext," %02d - %02d - %02d",h,m,s);
LCD_DisplayStringLine(Line5,lcdtext);
sprintf((char *)lcdtext," --");
LCD_DisplayStringLine(Line6,lcdtext);
}
break;
case 4://璁剧疆鍒嗛挓鐣岄潰
{
sprintf((char *)lcdtext," Setting ");
LCD_DisplayStringLine(Line3,lcdtext);
sprintf((char *)lcdtext," %02d - %02d - %02d",h,m,s);
LCD_DisplayStringLine(Line5,lcdtext);
sprintf((char *)lcdtext," --");
LCD_DisplayStringLine(Line6,lcdtext);
}
break;
case 5://璁剧疆绉掔晫闈?
{
sprintf((char *)lcdtext," Setting ");
LCD_DisplayStringLine(Line3,lcdtext);
sprintf((char *)lcdtext," %02d - %02d - %02d",h,m,s);
LCD_DisplayStringLine(Line5,lcdtext);
sprintf((char *)lcdtext," --");
LCD_DisplayStringLine(Line6,lcdtext);
}
break;
default:
break;
}
}
void led_process(void)
{
if (ledflag && val > 3.3f * k)
{
if (ledState)
{
leddisplay(0x02);
}else{
leddisplay(0x00);
}
}
}
void rx_process(void)
{
if(rxflag)
{
if(Recive_Data[3] == '1')
{
k = 0.1;
char My_sentdata[30];
sprintf(My_sentdata,"okn");
HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
}
else if(Recive_Data[3] == '2')
{
k = 0.2;
char My_sentdata[30];
sprintf(My_sentdata,"okn");
HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
}
else if(Recive_Data[3] == '3')
{
k = 0.3;
char My_sentdata[30];
sprintf(My_sentdata,"okn");
HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
}
else if(Recive_Data[3] == '4')
{
k = 0.4;
char My_sentdata[30];
sprintf(My_sentdata,"okn");
HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
}
else if(Recive_Data[3] == '5')
{
k = 0.5;
char My_sentdata[30];
sprintf(My_sentdata,"okn");
HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
}
else if(Recive_Data[3] == '6')
{
k = 0.6;
char My_sentdata[30];
sprintf(My_sentdata,"okn");
HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
}
else if(Recive_Data[3] == '7')
{
k = 0.7;
char My_sentdata[30];
sprintf(My_sentdata,"okn");
HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
}
else if(Recive_Data[3] == '8')
{
k = 0.8;
char My_sentdata[30];
sprintf(My_sentdata,"okn");
HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
}
else if(Recive_Data[3] == '9')
{
k = 0.9;
char My_sentdata[30];
sprintf(My_sentdata,"okn");
HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50);
}
EEPROM_Write_Float(0,k);
rx_pointer=0;
rxflag=false;
memset(Recive_Data,0,5);
}
}
void tx_process(void)
{
static bool already_sent = false;
if(Time.Hours == h && Time.Minutes == m && Time.Seconds == s)
{
if (!already_sent) // 检查是否已经发送过数据
{
char My_sentdata[30];
sprintf(My_sentdata,"%.2f+%.1f+%02d%02d%02dn", val, k, h, m, s);
HAL_UART_Transmit(&huart1, (uint8_t*)My_sentdata, strlen(My_sentdata), 50);
already_sent = true; // 标记已发送
}
}
else
{
already_sent = false; // 当时间改变时重置标志
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %drn", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
void key_process(void);
处理按键任务,用户多个界面之间的转换以及上报时间的设置,根据当前lcd的状态,来决定按键按下的功能
void lcd_process(void);
显示各种状态,使用状态机,显示不同状态,使用sprinf函数格式化重定向字符串
void led_process(void);
控制led闪烁,使用一个计数值,在抵达定时器中++实现200ms计数
void rx_process(void);
控制串口发送的数据,不知为何HAL_UART_Receive_IT(huart, Temp_Data, 1);中如果不是1,就会只能进入一次串口接收回调函数,所以使用每次接收一个然后设置一个缓冲区,控制指针来一次接收5个数据,只有接受完五个数据即进入5次串口接收回调函数后才执行解析函数,注意最后全波清0
void tx_process(void);
控制上报的数据,当rtc时钟的时间到达设置时间发送数据
led.c
#include "led.h"
void leddisplay(uint8_t led)
{
HAL_GPIO_WritePin(GPIOC,GPIO_PIN_All,GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOC,led<<8,GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET);
}
该板子是低电平点亮,8个led灯使用的是高8位所以需要左移8位,led等于几就是将高8位中第几位设置成低电平即点亮,由于led与lcd复用引脚最后打开锁存器让值被写入之后,立刻关闭锁存器防止影响lcd
myadc.c
#include "myadc.h"
float get_adc(ADC_HandleTypeDef *hadc)
{
float val;
// 等待ADC转换完成
HAL_ADC_Start(hadc);
val = HAL_ADC_GetValue(hadc);
return val*3.3f/4096;
}
usart1.c
#include "usart1.h"
#include "string.h"
#include "usart.h"
#include "stdbool.h"
extern float k;
unsigned char Recive_Data[5];
unsigned char Temp_Data[1];
unsigned char rx_pointer = 0;
bool rxflag = false;
char usartsend[30];
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if(huart->Instance==USART1)
{
Recive_Data[rx_pointer++] = Temp_Data[0];
HAL_UART_Receive_IT(huart, Temp_Data, 1);
if(Recive_Data[4]!=0)
{
rxflag = true;
}
}
}
接收完四个之后置一个标志位,rx_process才能执行,每次都需调用HAL_UART_Receive_IT函数重新开启串口接收
key.c
#include "key.h"
#include "led.h"
struct Key key[4]={0,0,0,0};
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance==TIM2)
{
key[0].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_0);
key[1].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_1);
key[2].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_2);
key[3].key_gpio = HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_0);
for(int i = 0; i<4;i++)
{
switch (key[i].key_index)
{
case 0:/* constant-expression */
{
if(key[i].key_gpio==0)
{
key[i].key_index = 1;
}
}
break;
case 1:
{
if(key[i].key_gpio==0)
{
key[i].key_index = 2;
key[i].key_flag=1;
}else{
key[i].key_index = 0;
}
}
case 2:
{
if(key[i].key_gpio==1)
{
key[i].key_index=0;
}
}
break;
}
}
}
}
使用状态机,第一次进入之后,进入下一个状态,如果电平还是刚刚的电平说明真的按下,如果不是重新进入第一个状态重新判断,定时器定时时间10ms刚好消抖,最后一个case2是判断如果按键松开,说明可以进入下一次判断。
i2c_hal.c
/*
程序说明: CT117E-M4嵌入式竞赛板GPIO模拟I2C总线驱动程序
软件环境: MDK-ARM HAL库
硬件环境: CT117E-M4嵌入式竞赛板
日 期: 2020-3-1
*/
#include "i2c_hal.h"
#include "main.h"
#define DELAY_TIME 20
/**
* @brief SDA线输入模式配置
* @param None
* @retval None
*/
void SDA_Input_Mode()
{
GPIO_InitTypeDef GPIO_InitStructure = {0};
GPIO_InitStructure.Pin = GPIO_PIN_7;
GPIO_InitStructure.Mode = GPIO_MODE_INPUT;
GPIO_InitStructure.Pull = GPIO_PULLUP;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}
/**
* @brief SDA线输出模式配置
* @param None
* @retval None
*/
void SDA_Output_Mode()
{
GPIO_InitTypeDef GPIO_InitStructure = {0};
GPIO_InitStructure.Pin = GPIO_PIN_7;
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}
/**
* @brief SDA线输出一个位
* @param val 输出的数据
* @retval None
*/
void SDA_Output( uint16_t val )
{
if ( val )
{
GPIOB->BSRR |= GPIO_PIN_7;
}
else
{
GPIOB->BRR |= GPIO_PIN_7;
}
}
/**
* @brief SCL线输出一个位
* @param val 输出的数据
* @retval None
*/
void SCL_Output( uint16_t val )
{
if ( val )
{
GPIOB->BSRR |= GPIO_PIN_6;
}
else
{
GPIOB->BRR |= GPIO_PIN_6;
}
}
/**
* @brief SDA输入一位
* @param None
* @retval GPIO读入一位
*/
uint8_t SDA_Input(void)
{
if(HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_7) == GPIO_PIN_SET){
return 1;
}else{
return 0;
}
}
/**
* @brief I2C的短暂延时
* @param None
* @retval None
*/
static void delay1(unsigned int n)
{
uint32_t i;
for ( i = 0; i < n; ++i);
}
/**
* @brief I2C起始信号
* @param None
* @retval None
*/
void I2CStart(void)
{
SDA_Output(1);
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
SDA_Output(0);
delay1(DELAY_TIME);
SCL_Output(0);
delay1(DELAY_TIME);
}
/**
* @brief I2C结束信号
* @param None
* @retval None
*/
void I2CStop(void)
{
SCL_Output(0);
delay1(DELAY_TIME);
SDA_Output(0);
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
SDA_Output(1);
delay1(DELAY_TIME);
}
/**
* @brief I2C等待确认信号
* @param None
* @retval None
*/
unsigned char I2CWaitAck(void)
{
unsigned short cErrTime = 5;
SDA_Input_Mode();
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
while(SDA_Input())
{
cErrTime--;
delay1(DELAY_TIME);
if (0 == cErrTime)
{
SDA_Output_Mode();
I2CStop();
return ERROR;
}
}
SDA_Output_Mode();
SCL_Output(0);
delay1(DELAY_TIME);
return SUCCESS;
}
/**
* @brief I2C发送确认信号
* @param None
* @retval None
*/
void I2CSendAck(void)
{
SDA_Output(0);
delay1(DELAY_TIME);
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
SCL_Output(0);
delay1(DELAY_TIME);
}
/**
* @brief I2C发送非确认信号
* @param None
* @retval None
*/
void I2CSendNotAck(void)
{
SDA_Output(1);
delay1(DELAY_TIME);
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
SCL_Output(0);
delay1(DELAY_TIME);
}
/**
* @brief I2C发送一个字节
* @param cSendByte 需要发送的字节
* @retval None
*/
void I2CSendByte(unsigned char cSendByte)
{
unsigned char i = 8;
while (i--)
{
SCL_Output(0);
delay1(DELAY_TIME);
SDA_Output(cSendByte & 0x80);
delay1(DELAY_TIME);
cSendByte += cSendByte;
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
}
SCL_Output(0);
delay1(DELAY_TIME);
}
/**
* @brief I2C接收一个字节
* @param None
* @retval 接收到的字节
*/
unsigned char I2CReceiveByte(void)
{
unsigned char i = 8;
unsigned char cR_Byte = 0;
SDA_Input_Mode();
while (i--)
{
cR_Byte += cR_Byte;
SCL_Output(0);
delay1(DELAY_TIME);
delay1(DELAY_TIME);
SCL_Output(1);
delay1(DELAY_TIME);
cR_Byte |= SDA_Input();
}
SCL_Output(0);
delay1(DELAY_TIME);
SDA_Output_Mode();
return cR_Byte;
}
//
void I2CInit(void)
{
GPIO_InitTypeDef GPIO_InitStructure = {0};
GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_6;
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.Pull = GPIO_PULLUP;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}
void EEPROM_Write(uint8_t address,uint8_t Data)
{
I2CStart();
I2CSendByte(0xA0);
I2CWaitAck();
I2CSendByte(address);
I2CWaitAck();
I2CSendByte(Data);
I2CWaitAck();
I2CStop();
}
uint8_t EEPROM_Read(uint8_t address)
{
uint8_t data;
I2CStart();
I2CSendByte(0xA0);
I2CWaitAck();
I2CSendByte(address);
I2CWaitAck();
I2CStop();
I2CStart();
I2CSendByte(0xA1);
I2CWaitAck();
data = I2CReceiveByte();
I2CWaitAck();
I2CStop();
return data;
}
void EEPROM_Write_Float(uint8_t address, float data)
{
union FloatUnion fu;
fu.floatval = data;
for(int i = 0; i < sizeof(float); i++)
{
EEPROM_Write(address + i, fu.bytes[i]);
HAL_Delay(5);
}
}
float EEPROM_Read_Float(uint8_t address)
{
union FloatUnion fu;
for(int i = 0; i < sizeof(float); i++)
{
fu.bytes[i] = EEPROM_Read(address + i);
}
return fu.floatval;
}
只有最后四个函数是本人写的,其余为蓝桥杯官方提供,主要是两种i2c时序,指定地址写和指定地址读的时序,重点在读需要首先写入要读取的地址之后再开始读,浮点数的存储使用联合体union
floatval和bytes数组共用内存
可以看本人文章stm32教程中有对i2c四种时序的说明
原文地址:https://blog.csdn.net/Johnor/article/details/135944568
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_66285.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!