本文介绍: 韦达定理说明了一元n次方程中根和系数之间的关系。法国数学家韦达(F. Vieta,1540—1603)最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。有趣的是,韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论证。韦达定理在方程论中有着广泛的应用。
=ac
2. 韦达定理的作用
不论是解方程,还是研究方程的性质,韦达定理都很有用。
一般来说,韦达定理主要有以下四个方面的用途。
(1)利用韦达定理可以观察出一些一元二次方程的根;
(2)已知方程的两根之间的某种关系,可以求出方程的系数来;
(3)已知二次方程,求它的两个根的齐次幂的和;
(4)已知二次方程,求作一个新的二次方程,使得两个方程的根满足某种关系。
三、韦达定理的应用举例
1. 解题示例1
对于方程
x
2
−
2. 解题示例2
3. 解题示例3
4. 解题示例4
5. 解题示例5
6. 解题示例6
7. 解题示例7
总结
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。