本文介绍: 图像重缩放是一种常用的双向操作,它首先将高分辨率图像缩小以适应各种显示器或存储和带宽友好,然后将相应的低分辨率图像放大以恢复原始分辨率或放大图像中的细节。然而,非单射下采样映射丢弃了高频内容,导致逆恢复任务存在不适定问题。这可以抽象为具有信息损失的一般图像退化-恢复问题。在这项工作中,我们提出了一个新的可逆框架来处理这一普遍问题,该框架从一个新的角度来模拟双向退化和恢复,即可逆双射变换。该框架的可逆性使其能够以分布的形式对退化前的信息损失进行建模,从而缓解恢复后的不适定问题
一、文章摘要
图像重缩放是一种常用的双向操作,它首先将高分辨率图像缩小以适应各种显示器或存储和带宽友好,然后将相应的低分辨率图像放大以恢复原始分辨率或放大图像中的细节。然而,非单射下采样映射丢弃了高频内容,导致逆恢复任务存在不适定问题。这可以抽象为具有信息损失的一般图像退化-恢复问题。在这项工作中,我们提出了一个新的可逆框架来处理这一普遍问题,该框架从一个新的角度来模拟双向退化和恢复,即可逆双射变换。该框架的可逆性使其能够以分布的形式对退化前的信息损失进行建模,从而缓解恢复后的不适定问题。具体来说,我们开发了可逆模型来生成有效的退化图像,同时在正向退化过程中将丢失内容的分布转化为潜变量的固定分布。然后,通过对生成的退化图像与随机绘制的潜在变量应用逆变换,使恢复变得易于处理。我们从图像的重缩放开始,实例化模型为可逆的重缩放网络,可以很容易地扩展到类似的脱色-着色任务。我们进一步建议将可逆框架与现有的退化方法(如图像压缩)结合起来,以获得更广泛的应用。实验结果表明,与现有方法相比,我们的模型在从缩小和脱色图像进行放大和彩色重建的定量和定性评估以及图像压缩的速率失真方面都有显著改进。
二、文章提出的方法
2.1 图像重缩放模型
对于具体的模型,我们在这一节从图像重缩放开始。我们开发了可逆重缩放网络(IRN)作为我们图像重缩放可逆建模框架的实例化模型,并描述了IRN的具体可逆结构和训练方法。我们还在算法1,2中给出了IRN模型中的下采样和升尺度算法作为示例,以更好地演示我们的可逆框架的输入、输出和过程。注意,在实践中,HR图像x和LR图像y将被量化为8位表示,如3.3.1节所述。我们在算法描述中省略了这个细节,并将定义域视为R。
2.1.1 可逆结构
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。