本文介绍: 通过改进传统的Relief算法,提出一种短期负荷预测特征输入量的选取方法,并使用相关性分析法来消除冗余特征。在所选特征和气温数据的基础上,应用相关相量机来建立预测模型。程序以美国德州电力市场某东部城市的真实负荷数据来进行仿真分析,结果表明本文的特征选取方法能够很好的提取负荷的短期趋势特征和周期性特征。
微❤关注“电气仔推送”获得资料(专享优惠)
参考文献
相关向量机和特征选取技术在短期负荷预测中的应用——刘刚
运行环境——MATLAB
程序简介
通过改进传统的Relief算法,提出一种短期负荷预测特征输入量的选取方法,并使用相关性分析法来消除冗余特征。在所选特征和气温数据的基础上,应用相关相量机来建立预测模型。程序以美国德州电力市场某东部城市的真实负荷数据来进行仿真分析,结果表明本文的特征选取方法能够很好的提取负荷的短期趋势特征和周期性特征。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。