前言
本节课程思维导图:
我们今天讲另外一种特殊的树,“堆”(Heap)。堆这种数据结构的应用场景非常多,最经典的莫过于堆排序了。堆排序是一种原地的、时间复杂度为 O(nlogn) 的排序算法。
快速排序和堆排序这两种排序算法的时间复杂度都是 O(nlogn),甚至堆排序比快速排序的时间复杂度还要稳定,但是,在实际的软件开发中,快速排序的性能要比堆排序好,这是为什么呢?
如何理解“堆”?
我们现在就来看看,什么样的树才是堆。我罗列了两点要求,只要满足这两点,它就是一个堆。
第一点,堆必须是一个完全二叉树。完全二叉树要求,除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。
第二点,堆中的每个节点的值必须大于等于(或者小于等于)其子树中每个节点的值。实际上,我们还可以换一种说法,堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。这两种表述是等价的。
对于每个节点的值都大于等于子树中每个节点值的堆,我们叫做“大顶堆”。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫做“小顶堆”。
如何实现一个堆?
要实现一个堆,我们先要知道,堆都支持哪些操作以及如何存储一个堆。
完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。
假设,堆中的数据是从数组下标为 1 的位置开始存储,我们来看一个用数组存储堆的例子。
从图中我们可以看到,数组中下标为 i 的节点的左子节点,就是下标为 i∗2 的节点,右子节点就是下标为 i∗2+1 的节点,父节点就是下标为 i∗1/2的节点。
知道了如何存储一个堆,那我们再来看看,堆上的操作有哪些呢?我罗列了几个非常核心的操作,分别是往堆中插入一个元素和删除堆顶元素。
1. 往堆中插入一个元素
往堆中插入一个元素后,我们需要继续满足堆的两个特性。如果我们把新插入的元素放到堆的最后,不符合堆的特性,我们就需要进行调整,让其重新满足堆的特性,这个过程我们起了一个名字,就叫做堆化(heapify)。
堆化实际上有两种,从下往上和从上往下。这里我先讲从下往上的堆化方法。
堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。我们可以让新插入的节点与父节点对比大小。如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点。一直重复这个过程,直到父子节点之间满足刚说的那种大小关系。
2. 删除堆顶元素
从堆的定义的第二条中,任何节点的值都大于等于(或小于等于)子树节点的值,我们可以发现,堆顶元素存储的就是堆中数据的最大值或者最小值。
假设我们构造的是大顶堆,堆顶元素就是最大的元素。我们把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是从上往下的堆化方法。
我们知道,一个包含 n 个节点的完全二叉树,树的高度不会超过 log2n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(logn)。
如何基于堆实现排序?
我们可以把堆排序的过程大致分解成两个大的步骤,建堆和排序。
1. 建堆
我们首先将数组原地建成一个堆。所谓“原地”就是,不借助另一个数组,就在原数组上操作。
建堆过程的路是从后往前处理数组,并且每个数据都是从上往下堆化。因为叶子节点往下堆化只能自己跟自己比较,所以我们直接从最后一个非叶子节点开始,依次堆化就行了。
现在,我们来看,建堆操作的时间复杂度是多少呢?因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始。每个节点堆化的过程中,需要比较和交换的节点个数,跟这个节点的高度 k 成正比。
我们将每个非叶子节点的高度求和,就是下面这个公式:
最终的结果就是下面图中画的这个样子。
因为 h=log2n,代入公式 S,就能得到 S=O(n),所以,建堆的时间复杂度就是 O(n)。
2. 排序
建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换,那最大元素就放到了下标为 n 的位置。当堆顶元素移除之后,我们把下标为 n 的元素放到堆顶,然后再通过堆化的方法,将剩下的 n−1 个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n−1 的位置,一直重复这个过程,直到最后堆中只剩下标为 1 的一个元素,排序工作就完成了。
现在,我们再来分析一下堆排序的时间复杂度、空间复杂度以及稳定性。
整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n),排序过程的时间复杂度是 O(nlogn),所以,堆排序整体的时间复杂度是 O(nlogn)。
堆排序不是稳定的排序算法,因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以就有可能改变值相同数据的原始相对顺序。
解答开篇
在实际开发中,为什么快速排序要比堆排序性能好?
我觉得主要有两方面的原因。第一点,堆排序数据访问的方式没有快速排序友好。
对于快速排序来说,数据是顺序访问的。而对于堆排序来说,数据是跳着访问的。以,这样对 CPU 缓存是不友好的。
第二点,对于同样的数据,在排序过程中,堆排序算法的数据交换次数要多于快速排序。
对于基于比较的排序算法来说,整个排序过程就是由两个基本的操作组成的,比较和交换(或移动)。快速排序数据交换的次数不会比逆序度多。但是堆排序的第一步是建堆,建堆的过程会打乱数据原有的相对先后顺序,导致原数据的有序度降低。比如,对于一组已经有序的数据来说,经过建堆之后,数据反而变得更无序了。
内容小结
堆是一种完全二叉树。它最大的特性是:每个节点的值都大于等于(或小于等于)其子树节点的值。因此,堆被分成了两类,大顶堆和小顶堆。
堆中比较重要的两个操作是插入一个数据和删除堆顶元素。这两个操作都要用到堆化。插入一个数据的时候,我们把新插入的数据放到数组的最后,然后从下往上堆化;删除堆顶数据的时候,我们把数组中的最后一个元素放到堆顶,然后从上往下堆化。这两个操作时间复杂度都是 O(logn)。
堆排序包含两个过程,建堆和排序。我们将下标从 1/2n 到 1 的节点,依次进行从上到下的堆化操作,然后就可以将数组中的数据组织成堆这种数据结构。接下来,我们迭代地将堆顶的元素放到堆的末尾,并将堆的大小减一,然后再堆化,重复这个过程,直到堆中只剩下一个元素,整个数组中的数据就都有序排列了。
原文地址:https://blog.csdn.net/weixin_43597208/article/details/134692092
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:http://www.7code.cn/show_7951.html
如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除!