使用 PyTorch 实现卷积形式的 ResNet(残差网络),你需要遵循几个主要步骤。首先,让我们概述 ResNet基本结构。ResNet 通过添加所谓的“残差连接”(或跳跃连接)来解决深度神经网络中的梯度消失/爆炸问题。这些连接允许梯度直接流过网络,从而改善了训练过程

1. 导入必需的库

import torch
import torch.nn as nn
import torch.nn.functional as F

2. 定义残差块

残差块包括两个卷积层和一个跳跃连接。

class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = F.relu(self.bn1(out))
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample:
            residual = self.downsample(x)
        out += residual
        out = F.relu(out)
        return out

3. 构建 ResNet 网络

这里以 ResNet-18 为例,但可以根据需要调整层数。

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        super(ResNet, self).__init__()
        self.in_channels = 64
        self.conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self.make_layer(block, 64, layers[0])
        self.layer2 = self.make_layer(block, 128, layers[1], 2)
        self.layer3 = self.make_layer(block, 256, layers[2], 2)
        self.layer4 = self.make_layer(block, 512, layers[3], 2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512, num_classes)

    def make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if (stride != 1) or (self.in_channels != out_channels):
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels))
        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels
        for i in range(1, blocks):
            layers.append(block(out_channels, out_channels))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

4. 实例化网络和训练

创建 ResNet 实例并进行训练

model = ResNet(ResidualBlock, [2, 2, 2, 2])  # ResNet-18
# 接下来训练代码,包括数据加载损失函数优化器等

原文地址:https://blog.csdn.net/xfysq_/article/details/134685885

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_#ID#.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注