本文介绍: 【代码】LeetCode63. Unique Paths II。

一、题目

You are given an m x n integer array grid. There is a robot initially located at the topleft corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m – 1][n – 1]). The robot can only move either down or right at any point in time.

An obstacle and space are marked as 1 or 0 respectively in grid. A path that the robot takes cannot include any square that is an obstacle.

Return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The testcases are generated so that the answer will be less than or equal to 2 * 109.

Example 1:

Input: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
Output: 2
Explanation: There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:

  1. Right -> Right -> Down -> Down
  2. Down -> Down -> Right -> Right
    Example 2:

Input: obstacleGrid = [[0,1],[0,0]]
Output: 1

Constraints:

m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j] is 0 or 1.

二、题解

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>&amp; obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<int>> dp(m,vector<int>(n,0));
        //初始化dp数组
        for(int i = 0;i < m;i++){
            if(obstacleGrid[i][0] == 0) dp[i][0] = 1;
            else break;
        }
        for(int j = 0;j < n;j++){
            if(obstacleGrid[0][j] == 0) dp[0][j] = 1;
            else break;
        }
        for(int i = 1;i < m;i++){
            for(int j = 1;j < n;j++){
                if(obstacleGrid[i][j] == 1) dp[i][j] = 0;
                else dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
};

原文地址:https://blog.csdn.net/weixin_46841376/article/details/134692487

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

如若转载,请注明出处:http://www.7code.cn/show_9477.html

如若内容造成侵权/违法违规/事实不符,请联系代码007邮箱:suwngjj01@126.com进行投诉反馈,一经查实,立即删除

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注